Imperial College
London

MSC INDIVIDUAL PROJECT

IMPERIAL COLLEGE LONDON

DEPARTMENT OF COMPUTING

Cardiac Shape Analysis with Nouveau
Variational Autoencoder

Supervisors:

Prof. Elsa Angelini

Author: Prof. Loic Le Folgoc
Freddy Jiang

Second Marker:

Dr Ahmed Fetit

Submitted in partial fulfilment of the requirements for the MSc degree in Computing (Artificial
Intelligence and Machine Learning) of Imperial College London

September 8, 2024



Abstract

Cardiovascular diseases (CVDs) cause over 20 million deaths annually, with a third occuring
prematurely in people under the age of 70. However, CVDs are largely preventable with early
detection and intervention. Over recent years, there has been rapid progression in the develop-
ment of automated techniques for cardiac magnetic resonance imaging (MRI) analysis. Accu-
rate delineation of cardiac components is crucial to assist in anomaly detection and diagnosis,
and shape analysis is an essential prerequisite.

The emergence of deep learning has introduced powerful frameworks capable of automat-
ing the process of learning compact shape representations. Variational autoencoders (VAEs)
are a class of generative models that excel at learning efficient low-dimensional representa-
tions of complex data. In particular, the Nouveau VAE (NVAE) is a deep hierarchical VAE that is
the state-of-the-art among its class in encoding fine-grained details in high-resolution images.

In this dissertation, we examine how the NVAE framework can be applied to cardiac shape
analysis. We propose configurations that can learn from clinically annotated segmentation
masks to efficiently encode cardiac anatomic shapes, with significantly improved performance
over existing VAE models (up to 0.108 Dice increase for reconstructed masks and 22.0% anatom-
ical validity increase in synthetic masks when used as a generative model, the latter of which
ensures the generated shapes conform to realistic cardiac anatomy). Furthermore, we pro-
pose a novel metric, the Fréchet ResNet Distance with SimCLR (FRDS), which improves over
the Fréchet Inception Distance in measuring the similarity between synthetic and real cardiac
segmentation masks. We demonstrate that the learned NVAE encodings can be used in down-
stream tasks by using them as an anatomical constraint to improve the segmentation perfor-
mance of a U-Net model (5.3% anatomical validity increase). We find these encodings to gen-
eralise well when applied to unseen data, without the need for further training.
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Chapter 1

Introduction

1.1 Motivation

Cardiovascular diseases (CVDs) are diseases of the heart and blood vessels. Causing 20.5 million
deaths in 2021 and accounting for a third of all deaths globally, CVDs have been the leading
cause of death for decades[1]. Over 80% of CVDs are due to heart attacks and strokes, with a
third of these deaths occuring prematurely in people under the age of 70[2].

Up to 80% of premature heart attacks and strokes are preventable with treatment[1]. There
has been significant efforts in developing techniques and tools to identify patients at risk of
CVDs. In particular, it is crucial to monitor the shape of the heart. Magnetic resonance imaging
(MRI) is the gold standard for obtaining scans of the heart and surrounding structures. Accurate
delineation of heart components, especially the left and right ventricles (lower heart chambers)
and the myocardium (surrounding muscle tissue), is an important prerequisite to detect abnor-
malities and provide reliable diagnosis.

Advancements in machine learning frameworks have enabled the task of segmenting car-
diac scans to be semi-automated in clinical practice, from what traditionally involved fully
manual delineation. However, the lack of accuracy, robustness and interpretability of these
models poses a considerable barrier. As such, experts are still required to provide a significant
amount of manual correction and supervision, which is a time-consuming process and intro-
duces intra- and inter-observer variability.

Within the field of generative Al, variational autoencoders[3] (VAEs) excel at learning com-
pact representations of data, and have been used to learn underlying patterns of cardiac shapes.
They can provide population-level visualisations and transparency for classification models for
diagnosing CVDs[4, 5], which are otherwise notorious for being black-box models. The learned
representations can also be injected into, or used alongside, segmentation models to improve
output segmentations|6, (7, (8, 9].

As a generative model, VAEs are capable of producing synthetic data that shares the same
style and distribution as the training data. Historically, these synthetic data have been inferior
to other frameworks like generative adversarial networks (GANs)[10], flow-based methods[11]
and autoregressive models[12]. However, research efforts have lead to hierarchical VAE frame-
works with strong performance and stability. In particular, Nouveau VAE (NVAE)[13] is the
state-of-the-art among its class and has shown powerful capabilities in both generative tasks
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and learning compact representations that encode fine-grained details for high-resolution nat-
ural image datasets.

In this dissertation, we aim to apply NVAE to cardiac shape analysis and present a compre-
hensive evaluation of its performance and utility, including its adaptability to various down-
stream tasks by incorporating it within popular segmentation models.

1.2 Objectives

Our primary objective is to evaluate the performance of Nouveau VAE in cardiac shape encod-
ing. Specifically, the model is trained to perform 2 tasks: (1) it can take in cardiac segmentation
masks annotated by clinical experts and output reconstructions with minimal depreciation of
quality, and (2) it can generate realistic synthetic masks. A model that excels at both tasks is con-
sidered to have learned a meaningful, compact representation of the anatomical shapes. We
propose 2 hierarchical architectures adapted from the NVAE framework that greatly improves
the quality of reconstructions and generated masks over baseline VAE models. Furthermore,
we propose a novel metric, Fréchet ResNet Distance with SimCLR (FRDS) for measuring the
similarity between synthetic and real masks.

Our secondary objectives involve investigating the potential of using the learned represen-
tations from NVAE to improve downstream tasks. In particular, we extend an existing segmenta-
tion framework by using the learned representations as a regulariser. We find that this results in
the model producing more anatomically valid segmentations. We investigate the robustness of
this addition by evaluating the model on in-distribution data, as well as data from a previously
unseen dataset with different acquisition protocols. We find success in applying the framework
in a domain adaptation and few-shot learning setting.

1.3 Ethical Considerations

This dissertation is purely research-oriented. We do not warrant nor take liability of any misuse
of methods and/or findings associated with this work.

Experimental data is sourced from the Automated Cardiac Diagnosis Challenge (ACDC)
dataset[14] and the Multi-Centre, Multi-Vendor & Multi-Disease Cardiac Image Segmentation
Challenge (M&Ms) dataset[15}16]. Our research involves preprocessing of previously collected
sensitive data that has been completely anonymised and rendered unidentifiable. We use only
the data that is publicly available. As such, our work is exempt from ethical approval.

NVAE is open source and can be used in accordance with the NVIDIA Source Code Licens
Section 3.3 of the license states that the work can be used for research or evaluation purposes
only.

Our findings are a result of experiments that involve heavy computation via prolonged train-
ing of over 1,000 model and 860 hours of GPU time (Tesla A40 48GB). With a maximum power
consumption of 300W, the total energy consumption is estimated to be 258kWh and CO2 emis-

https://github.com/NVlabs/NVAE/blob/master/LICENSE
2Including hyperparameter tuning.
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sions to be 52.9k In comparison, the average electric car emits 1,278kg of CO2 emissions
annually.

To limit environmental impact, we make diligent effort in using systems optimised for Al
training, such as CUDA and Slurm Workload Manager, as well as writing efficient code.

1.4 Summary

Our experiments are conducted with the PyTorch Lightning framework. As a research paper
is expected to be produced from this work, our codebase will only be made publicly available
upon completion.

This dissertation is structured as follows. Chapter |2 provides a literature review on VAEs,
generative models and their applications in cardiac shape encoding. Chapter[3|analyses the ex-
perimental datasets and describes the preprocessing pipeline. Chapter 4] describes the experi-
ments conducted, including our proposed methods and implementation details. In Chapter |5}
we introduce FRDS, a metric for evaluating quality of synthetic cardiac shapes. Chapter [6]re-
ports experimental results and presents a quantitative and qualitative evaluation of proposed
methods. Finally, Chapter[7|revisits the objectives by summarising our contributions, provides
concluding remarks and proposes future directions of this project.

3Assuming an emission factor of 0.20493kgCO2e/kWh|17].




Chapter 2

Background

2.1 Generative Al

Generative artificial intelligence (generative Al) encompasses a class of algorithms that can
output realistic synthetic data. Advancements in deep neural networks have led to the de-
velopment of models capable of generating high quality data across domains such as text[18],
images[12] and audio[19]. In this section, we overview foundational concepts and models of
generative Al, with a focus on the variational autoencoder[20].

2.1.1 Autoencoder

An autoencoder([21] is an artificial neural network that aims to learn an efficient representa-
tion of an unlabelled set of data by passing the data through a low-dimensional space. This
architecture is a powerful tool for feature extraction by dimensionality reduction.

More formally, a high-dimensional input x € R is passed through an encoder f to produce
a low-dimensional latent variable z € R? where d < D. z is then passed through a decoder g to
output a reconstruction & € RP (Figure[2.1). The network is trained to minimise the reconstruc-

L 2
8>

8
v

Encoder f(-) z Decoder g(-)

Figure 2.1: The autoencoder architecture. The encoder f maps a high-dimensional input x to a
low-dimensional representation z, then the decoder g maps z back to the original space. This
diagram uses MNIST[22] as an example dataset. The encoder-decoder architecture is chosen
appropriately for the data domain, such as using convolutional layers to process images. Due to
the low-dimensional bottleneck, the reconstruction may lose some quality (lossy compression).
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tion loss, that is, the difference between x and X. The low-dimensional bottleneck forces the
network to extract the most important features of the input data. Applications of autoencoders
include dimensionality reduction[23], denoising[24] and anomaly detection[25].

2.1.2 Variational Autoencoder

A variational autoencoder[20] (VAE) is a probablistic extension of an autoencoder. In short, the
encoder outputs a distribution g (z | x) over the latent space instead of a fixed point. A sample
z ~ qy(z| x) is drawn from this distribution and passed through the decoder to output X (Fig-
ure[2.2a). This variability allows the network to be used for generative tasks (Figure[2.2b). The
ability to produce synthetic data allows VAEs to be applied in anomaly correction[6], improving
speech recognition systems[26] and options pricing[27].

More formally, a VAE is a directed graphical model that assumes Markovian properties to
learn the data distribution as py(x, z) = pg(x|z) pg(z), where we assume there exists an unob-
served factor z that affects data generation and it follows a prior distribution py(z) (Figure[2.3).
Then, the marginal likelihood is pg(x) = [, pg(x12) pg(2)dz. We are interested in maximising
log pp(x). However, integrating over the entire latent space is intractable, hence the true pos-

L 4
8>

Y

z~ N(u, 0% Decoder g(-)

Encoder f(-) >

8
4

(a) Reconstruction / training process. The encoder f maps a high-dimensional input x to a simple dis-
tribution over a low-dimensional space, often a Gaussian. A latent variable z is sampled from this space,
then the decoder g maps z back to the original space.

Y
>

z~N(0,I) Decoder g(-)

(b) Generative process. Assume a standard Gaussian prior. A sample z is drawn from the prior, then the
decoder g maps z to a synthetic data point. The generated image resembles the digit 2.

Figure 2.2: The variational autoencoder architecture. The figures use MNIST[22] as an exam-
ple dataset. Similar to an autoencoder, the reconstruction may lose quality due to the low-
dimensional bottleneck. The generated image also exhibits a lower quality texture.
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Figure 2.3: The directed graphical model of a variational autoencoder. Solid lines correspond to
the decoder process modelled by parameters 8, dashed lines correspond to the encoder process
modelled by ¢. [20, p. 2]

terior pg(z|x) = % is also intractable. Instead, we introduce the encoder qy(z|x) to ap-

proximate the true posterior. We refer to py(x|z) as the decoder. In literature, the encoder and
decoder are sometimes referred to as the recognition model and generative model[20].

In practice, we typically assume a standard Gaussian prior py(z) =4 (z;0, I) Let
qp(zlx) = N (z; u(p(x),diag(ai(x))). Then, the marginal log-likelihood can be shown to be
bound by the evidence lower bound £ (x, 6, ¢) (ELBO) (2.1).

log py (%) = Eg, (z1x) [10g P (x12)] — D | (21011 po (2)] =t 210, ¢ ) @1

The ELBO has two terms: a log-likelihood reconstruction term and a KL divergence term
that acts as a regulariser. Using this reformulation, we maximise the ELBO during train-

ing. Dgr [q(/,(zlx)llpg(z)] can be computed analytically for Gaussian and Bernoulli priors.

Egp(zix) [log pe (x|2)] can be approximated using the reparameterisation trick and MC sampling
to obtain a differentiable expression for backpropagation (2.2).

1 M
Egy (20 [log po(x12)] = i Y logpy (xm | T(p(xm,em)) (2.2)
m=1
Tp(x,€) == pp(x) +0p(x)0€

M
X1,... X0 ~ {Xn}
€1,...€M~=/V(0,I)

A restriction of the VAE is that during inference, the sampled z completely determines the
generated data point. Assuming a well-trained VAE, this data point can resemble a realistic
sample from any class within the train set. Frameworks have been proposed to introduce more
control over the type of data generated, such as Conditional VAE (CVAE)[28], which conditions
the generation on an additional input.

2.1.3 Disentanglement

In the context of representation learning, the data distribution for a complex task often has
many underlying explanatory factors of variation. Disentanglement is the process of separating
these factors into distinct latent variables[29].

'Some works use a Bernoulli prior or a uniform prior.

10



CHAPTER 2. BACKGROUND 2.1. GENERATIVE Al

We focus on disentanglement for VAEs. A fully disentangled latent space is one where each
dimension corresponds to one feature, so changing the value along that dimension (and fixing
other dimensions) would cause changes to that feature only. By default, VAEs do not enforce
disentanglement. However, it is desirable in some use cases, as it allows for direct control over
the factors of variation during generation.

B-VAE[30] is a framework that extends the VAE by adding a hyperparameter f that weights
the KL divergence term in the ELBO(2.3).

ZLO,¢, B;%) = Egy 21 [log po(x12)] = BDx L [%(le)llpe(Z) (2.3)

B >1 encourages disentanglement while maintaining a lower bound on the marginal likeli-
hood. To realise the former, the KL divergence term can be decomposed as (2.4)[12].

Epaaca ) [Px LGy (2] X) || pe(2))] = 1(x; 2) + Dk 1(qp(2)|| pe(2)) (2.4)
q6(2) = Epyya(0 1G9 (2] X)]

Penalizing Dk (q4(2)||pg(2)) pushes the aggregate posterior g4(z) towards the factorial prior
po(2). This encourages independence between the dimensions of z. Minimising this term also
improves generation quality, since a perfect recognition model gy (z) = pg(z) yields synthetic
data indistuingishable from real data. However, penalizing the mutual information I(x; z)l re-
duces information about x in z. Therefore, -VAE introduces a trade-off between disentangle-
ment and reconstruction quality.

There has been efforts to address this drawback of -VAE, and we focus on two of them: the
PB-TCVAE algorithm[31] and the FactorVAE framework[32].

Both B-TCVAE and FactorVAE build on top of 8-VAE by introducing a loss function that
encourages a factorised latent distribution (2.5).

2(9,({), a»ﬁ;)’; x) = [Eq(P(zlx) [logpﬂ (x|z)] - al(x, Z)

(2.5)
+BDkL (Chp(z)lll—[ %(Zj)) ~y)_ Dk (q(p(Zj)IlPG (Zj))
J i

Crucially, (2.5) introduces a total correlation (TC) term (weighted by f), which enforces statis-
tically independent factors in the latent distribution. However, TC is analytically intractable.
PB-TCVAE proposes approximating TC with minibatch sampling, for which we derive below.

qe(2)
[1; q¢(z;)
e

e T (=)

i

On the other hand, FactorVAE proposes using a discriminator to approximate the density ratio
in the TC term. The discriminator is trained jointly with the VAE, similar to the adversarial
training process in GANs[10] (Section2.1.5).

DKL(CI¢(Z)|Hq¢(Zj)) =fq¢(z)1og
]' V4

M~ qe(2)

“Equivalent to Dx.[qy (X, 2)|| 4o (2) pp (x)].

11
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2.1.4 InfoVAE

In Section we discussed the shortcomings of $-VAE, in particular, how penalizing the
mutual information term can lower reconstruction quality. On the other hand, penalizing
Dk1.(q¢(2)||pg(2)) can improve both disentanglement and generation quality. InfoVAE[33] is
a framework that extends -VAE by leverging this term to improve reconstruction quality while
maintaining good generations.

InfoVAE uses the loss function presented in (2.6). This extends the $-VAE loss (2.3) by intro-
ducing an additional regulariser term: the KL divergence between the prior and the aggregate
posterior, weighted by a parameter y.

ZL(0,¢,B,7;%) = Egyei [l0g Po(x12)] - BDk1 | ap(21011po(2) | ¥ Dr | ap(DlIpe(2)]|  (2.6)

When pg(x|z) is a complex distribution, the authors suggest using = 0. This is equivalent to
removing the mutual information penalty in the ELBO, as seen by (2.4). Dkp. [q(,,(z)ll pg(z)] is

not analytically tractable and the authors suggest using an auxiliary discriminator to approxi-
mate it.

2.1.5 Various Works

In this paper, we focus on the VAE and its derivatives, in particular, the Nouveau VAE (NVAE)
framework|[13] (Section|2.2.2). Our work shares similarities with other generative frameworks,
so we describe relevant works below.

A generative adversarial network (GAN)[10] is a generative framework that aims to fit the
data distribution pgaa(x) directly as pg(x) without an explicit latent space. Instead, it intro-
duces a discriminator D. D is a binary classifier that aims to distinguish between real data
Xr ~ Pdata(X) and synthetic data xg ~ pg(x) produced by the generator G. G and D are trained
simultaneously in a 2-player min-max game. As such, unlike VAEs, training a GAN does not
involve calculating a log-likelihood. The aim is for G to generate data indistinguishable from
real data. GANs are capable of generating high fidelity data, and as a result have been applied
in super resolution tasks. However, they are more difficult to train and can suffer from mode
collaps Furthermore, the lack of an explicit latent space makes GANs less suitable for shape
encoding task compared to VAEs.

Normalising flow[11] is a method that transforms a random variable z with a simple dis-
tribution into a random variable x with a complex distribution using a sequence of invertible
transformations x = fxo...o fi(z). After applying f; at each step, the resulting distribution is
normalised. By enforcing f to be invertible, we can compute the probability density of x in
terms of z, which allows the log-likelihood to be evaluated. Hence, it is possible to perform
exact posterior inferenc in contrast to VAEs which only allow approximate inference. As ex-
ample, normalising flow can be used as a generative framework by letting p(z) to be a standard
Gaussian prior and p(x) to be the observable data distribution.

3The outputs of the generator captures limited diversity of the data distribution.

4The process of representing shapes compactly, usually as a low-dimensional vector. An example is an image
dataset, where learning the shape of key objects within each image allows the model to locate and segment them.

5Given x, find the exact value of z.

12
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Normalising flow can be used to extend VAEs by applying a sequence of invertible trans-
formations to the latent variable z, then passing the transformed z into the decoder. This no
longer restricts the approximate posterior to a simple distribution (e.g. Gaussian) and can allow
for better inference.

VAEs, GANs and normalising flows are non-autoregressive. An autoregressive generative
model generates data sequentially, where the next tokerﬁ is conditioned on previously gener-
ated tokens. As a result, autoregressive models can produce higher quality generations than
non-autoregressive models, but they are significantly slower at inference time([34)} 35} 36].

2.1.6 Evaluating Generation Quality

Evaluating synthetic data can be done empirically, but this succumbs to intra- and inter-
observer variability, as well as being time-consuming. The current standard for quantitative
evaluation of synthetic image data is the Fréchet Inception Distance (FID)[37], which builds on
top of the Inception Score (IS)[38]. We give a brief overview of both metrics.

The algorithm for computing IS involves using a discriminator to classify the synthetic data.
The discriminator is usually a pretrained Inception-v3 network. Let pg be the distribution of
synthetic data and p,;(y|x) be the probability that an image x is classified as y by the discrimi-
nator. IS is defined by (2.7). For maximum IS, the predictions should be uniformly distributed
across the classes and the entropy of the label distribution as predicted by the discriminator
should be minimised. This means the generated images are diverse and distinct.

(2.7)

IS(pg, pa) = exp | Ex~p, | Dk1 (Pd('lx)”fpd('|x)Pg(x)dx)

FID improves over IS by comparing the synthetic data distribution to the real data distri-
bution. It involves using a pretrained Inception-v3 network f with its classification head re-
moved. Given the real dataset X and the synthetic dataset X', compute the embeddings f(X)
and f(X"), then approximate them as Gaussian distributions A (u, %) and A (¢, X"). FID is de-
fined as dp (A (4, X), & (', X'))?, where dr is the Fréchet distance[39] as described by (2.8).

1
2

dF(,u,V):( inf f Ix—yl*dy(x,y) (2.8)
Yel'(w,v) Jrr xR?

Compared to IS, FID puts more emphasis on diversity of the synthetic data than quality of indi-
vidual generations[40]. Note that FID is a distance metric, so lower values correspond to better
generation quality.

There has been works to adapt FID to other domains, such as Fréchet Audio Distance
(FAD)[41] for evaluating synthetic audio data and Fréchet Video Distance (FVD)[42] for eval-
uating synthetic video data.

5In the context of autoregressive models, a token refers to a building block of data. For example, in the context
of generating image data, a token could be a pixel.

13
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2.2 Hierarchical Models

In Section[2.1.2, we present the single-layer VAE (Figure[2.2a) and illustrate how the reconstruc-
tion can lose quality due to the low-dimensional bottleneck. Similarly, in Figure[2.2b, the gen-
erated image is blurry. This smooth, blurry texture is a limitation of single-layer VAEs, due to
the L2 term in the objective function.

There has been works that attempt to use multiple layers of stochastic latent variables in
the VAE model (Figure [2.4a). The theoretical concept is for the variables in the topmost lay-
ers to have the smallest dimensionality and learn long-range correlations to capture smooth,
global features, while the variables in lower layers have higher dimensionality and build on top
of previous layers by adding finer details. However, the VAE model uses the mean field ap-
proximation: it works under the assumption that the posterior can be factorised over the latent
variables. This is a restrictive assumption and the VAE model degrades in performance after
only 2 layers[43].

In this section, we discuss the Ladder VAE[43] and Nouveau VAE[13], two hierarchical VAE
frameworks that can be used to train highly expressive generative models scalable to many la-
tent layers.

2.2.1 Ladder VAE

Ladder VAE (LVAE)[43] is a hierarchical VAE framework that introduces a new encoder archi-
tecture which combines the approximate likelihood with the decoder model. Combined with
stability techniques such as batch normalisation and a deterministic warm-up period for the
KL divergence term, LVAE can learn a more distributed representation and achieve better gen-
eration quality than the VAE.

Figure |2.4b presents the LVAE architecture. The decoder is the same as a VAE model. The
encoder recursively corrects the generative distribution conditioned on a data-dependent ap-
proximate likelihood. In the downward pass, the decoder computes the approximate posterior

ONO () ()

<« — shared—»

ONO OmONO
o O o ©

(a) 2-layer VAE (b) 2-layer Ladder VAE

Figure 2.4: Directed graphical models for a multi-layer VAE and a Ladder VAE. Circles denote
stochastic variables while diamonds denote deterministic variables. ILVAE introduces a new
encoder architecture and uses the same decoder as a VAE. [43, p. 2]
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Figure 2.5: log Dg | for each latent unit in a 5-layer LVAE. Higher values correspond to darker
shades of grey. Warm-up (WU) helps preserve more active units in the early epochs, some of
which gets regularised and inactive later on. Even with batchnorm and warm-up, VAE struggles
to keep units active in the topmost layers and succumbs to posterior collapse. LVAE is able to
learn a more distributed representation. p. 6]

and the generative distribution. This is opposed to a multi-layer VAE, where the encoder and
decoder do not explicitly share information within each layer.

Compared to a multi-layer VAE, it is easier for LVAE to model the explaining away effect.
This refers to the phenomenon where latent variables can become statistically dependent on
each other: during inference, when a latent variable becomes active, it reduces the need for
other latent variables to be active, causing them to collapse.

Batch normalisation (batchnorm)[44] is a method that normalises a batch of values via cen-
tering and scaling. In multi-layer VAE and LVAE, batchnorm helps with training the topmost
layers to capture meaningful features. The warm-up period is motivated by the ELBO con-
taining a KL regularisation term. Since it forces the approximate posterior towards the prior,
some latent variables become inactive. To prevent early posterior collapse, a deterministic
warm-up period is introduced by extending to increase £ linearly from 0 to 1 during the
first n epochs. Figure[2.5|presents the effect of batchnorm and warm-up period.

The authors test LVAE on low-resolution greyscale datasets only (MNIST[22],
OMNIGLOT[45], NORB[46]), with the largest being 32x32. In Section [2.2.2, we discuss
how Nouveau VAE improves upon LVAE in architectural design and stability, allowing it to
tackle 256 x 256 colour image generation tasks.

2.2.2 Nouveau VAE

Nouveau VAE (NVAE) is a hierarchical VAE framework that shares similar principles with
LVAE, with additional improvements to architectural design and training stability. NVAE is
the first variational autoencoder successfully applied to large-resolutio image generation
tasks, such as CelebA HQ[47] resized to 256 x 256 and FFHQ[48] resized to 256 x 256 (both
datasets consist of human face images). It also achieves state-of-the-art performance among

7256 x 256
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non-autoregressive likelihood models on other datasets such as MNIST[22], CIFAR-10[49] and
CelebA 64[50,51].

Figure presents the NVAE architecture. Like LVAE, it consists of a shared encoder-
decoder tower. It follows a similar principle with other hierarchical models: the topmost layer
has a small latent dimensionality, and the spatial dimensions increase as we move down the lay-
ers. This allows global features to be captured higher up and finer details to be added in lower
layers. NVAE uses batchnorm and warm-up period for training stability, but it also incorpo-
rates techniques like residual parameterisation for information flow and spectral regularisation
(SR)[52,53].

Residual parameterisation of approximate posterior is proposed to improve training stabil-
ity, especially when there are many hierarchical groups. The residual cells (Figure are de-
signed with large kernel sizes to increase receptive field and capture global correlations, while
using depthwise separable convolutions to limit the number of parameters (compared to nor-
mal convolutions). Since depthwise convolutions operate on individual channels and thus have
limited capacity, they are applied after temporarily increasing the number of channels with a
1 x 1 convolution.

Mathematically, the residual distribution parameterises g(z|x) relative to p(z) so the
approximate posterior moves depending on how the prior moves. For a Normal prior

bottom-up model

[epowt IL\\()[)—({()I poareys
[epoux IL\\()l)—(I()l poareys

(a) Encoder (b) Decoder

Figure 2.6: Encoder and decoder of a 3-layer NVAE. r denotes a block of residual cells (see Fig-
ure2.7), + denotes a conbination cell that merges the layer-wise prior and posterior, and h is a
learnable parameter. Note that each layer can have multiple groups, for example, if the topmost
layer has 4 groups, we sample 4 latent variables from z; and use 4 combination cells to merge
them sequentially.[13} p. 3]
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(a) Encoder residual cell (b) Decoder residual cell

Figure 2.7: Residual cells for NVAE. The encoder residual cell consists of batchnorm, swish ac-
tivation and convolutions without changing number of channels. The decoder residual cell
further applies depthwise convolution at a projected number of channels. Both cells end with
a squeeze-and-excitation channel-wise gating layer, which improves performance.[13} p. 4]

p(z') = N (ui,0}), the KL term in the objective becomes @D

2

. ; 1Ay
Dk1 q(z’|x)||p(z’)] = 5( 02’ +Ac% —logAo: -1 (2.9)
i

Since (2.9) is unbounded, the authors propose controlling the Lipschitz constant of the network
using spectral regularisation. This is done by adding 1Y, s to the objective, where s is the
largest singular value of the weight matrix in layer i and A is a smoothness hyperparameter.

An area of concern is that NVAE has very high memory requirements. This is due to (1) the
increased channels for depthwise convolution, and (2) overparameterisation in the model and
latent space. The authors resort to using mixed-precision and gradient checkpointing[54, 55]
to reduce GPU memory. As an example, the model uses 5 groups of 20 x 4 x 4 and 10 groups of
20 x 8 x 8 latent variables for MNIST, which amounts to 14,400 latent parameters for a 28 x 28
image, greatly exceeding its 784 input dimensions. NVAE uses regularisation techniques to turn
off parameters during training. Less groups and smaller latent dimensions can be explored,
which reduces memory load and may also improve interpretability and generation stability.

2.3 Cardiac Anatomy and Imaging Modalities

Cardiac anatomy refers to the structure of the (human) heart. The study of cardiac anatomy
is important as irregularities in the heart can lead to life-threatening conditions, such as heart
failure. In this section, we provide a brief overview of relevant terminology and imaging modal-
ities.

The heart is divided into 4 chambers: deoxygenated blood enters the right atrium, then the
right ventricle. It gets pumped to the lungs for oxygenation, then enters the left atrium and
left ventricle. The left ventricle pumps the oxygenated blood which circulates throughout the
body. The 4 chambers are surrounded by myocardium, the muscle tissue of the heart. Irreg-
ularities include dilated cardiomyopathy (enlarged left ventricle) which can lead to weakened

8More formally, the Normal prior is defined as p(zlilz< 1) =N (ui(z<)),0i(z<;)) where [ is the latent layer index
and i is the layer group index. The prior is dependent on previous layers and we have omitted the dependency
notations for simplicity.
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myocardium and blood clots, hypertrophic cardiomyopathy (thickened myocardium) which
can cause heart failure, and abnormal right ventricle which can cause liver congestion.

Magnetic resonance imaging (MRI) is a medical imaging technique that uses magnetic fields
and radio waves to produce images of internal body structures. MRI and computed tomogra-
phy (CT) scans are widely used in cardiac imaging. Unlike CT, MRI does not involve ionising
radiation (X-rays), making it a safer procedure. However, MRI is more time-consuming - a full
cardiac MRI scan takes 30-60 minutes.

A single MRI scan is divided into multiple 2D slices, with each slice representing a cross-
section at a particular depth. The slices are stacked to form a 3D volume. A voxel is a 3D pixel,
representing a unit of volume. In general, an MRI scan can obtain images in the axial, coronal
or sagittal planes, depending on the slice orientation. These planes are relative to the body.
However, for cardiac imaging, planes relative to the heart are used: short-axis, long-axis and
4-chamber views. In particular, the short-axis view gives the best cross-section of the left and
right ventricles. In addition, the heart is an active muscle and its shape changes over a cycle.
Cardiac cine-MRI involves repeated imaging of the heart over a short period of time, from which

(c) End-systole (ES) (d) ES ground truth

Figure 2.8: A 2D slice of a cardiac cine-MRI scan, presented at both ED and ES phases. Acquired
in the short-axis view from a healthy patient. The ground truth segmentations (overlayed with
opacity) label the left ventricle (yellow), right ventricle (blue) and myocardium (green). Sourced
from the ACDC dataset [14].
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two phases can be extracted: end-systole (ES) and end-diastole (ED). ES refers to the heart after
contraction, while ED refers to the heart after relaxation. Figure presents a preview of a
short-axis slice.

2.4 Shape Encoding

Shape encoding is the process of representing shapes compactly. In the field of cardiac imaging,
shape encoding is used to encode the segmentation mask of the heart as a low-dimensional
vector. An accurate segmentation of the heart provides crucial information about its structure
and potential irregularities. A model that can encode these masks acts as a feature extractor,
and can be applied in downstream tasks. In this section, we overview 4 works that use VAEs to
encode medical segmentation masks for different applications.

2.4.1 Explainable Anatomical Shape Analysis

In 2019, Biffi et al. proposed a deep learning pipeline for interpretable shape analysis of cardiac
and brain segmentations[5]. The pipeline takes a previously segmented mask and encodes it
using a Ladder VAE (Section[2.2.1). The top-level latent space is chosen to be 2D, and the latent
representation is fed into a small MLP classifier to predict or diagnose a condition. Figure

3D
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Figure 2.9: Pipeline for interpretable shape analysis involves passing the end-systole and end-
diastole 3D segmented images through a convolutional encoder which compresses them each
into a 250-dimensional embedding. This is then fed into the LVAE+MLP architecture. Top dia-
gram shows the encoder and bottom diagram shows the decoder.[5, p. 6]
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presents the pipeline in more detail. Hence, the latent space, which acts as the classification
feature space, can be directly visualised (1) due to the generative properties of the LVAE which
gives variability, and (2) without needing additional dimensionality reduction as it is 2D.

The LVAE and MLP are trained end-to-end using a weighted loss function presented by
(2.10), where DSCgs and DSCpgp are the Dice coefficients for the end-systole and end-diastole
phases to measure reconstruction quality. CE is the cross-entropy loss for the MLP classifier,
L is the number of hierarchical layers (3 in the paper) and y is the linear warm-up for LVAE
training. a; are hyperparameters that weight the KL terms.

L
L0, $,a;x) = DSCrs + DSCrp +7 (Z ;D1 [q¢(zl|x,)||p9(z,)] + ,BCE) (2.10)
=0

Using a small MLP limits classifier capacity, which forces the top-level latent space to capture
the most discriminative features for diagnosis.

Figure presents the learned top-level latent space for cardiac application. 2 distinct
clusters form, corresponding to the healthy and HCM classes. Figure presents the average
shapes of the lateral and septal walls for the healthy and HCM classes.

Z3 - Training Data z, - Testing Data Z; - ACDC Data
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Figure 2.10: Top-level latent space for cardiac application, corresponding to dimensions 1 and
2 in the plots. Distinct clusters form for the train and test sets, while weaker clusters form for
the additional dataset (ACDC[14]). HVol refers to the healthy class. |5, p. 7]
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Figure 2.11: Wall thickness (dWT) point-wise differences between healthy and HCM average
shapes. The average shapes are generated by the LVAE decoder|[5, p. 8]
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Overall, the pipeline allows for the classification tasks to be more transparent while main-
taining high performance: 100% sensitivity and specificity on the in-distribution test set for
cardiac diagnosis of healthy and HCM patients, 78% sensitivity and 90% specificity for brain
diagnosis. Additionally, the model trained for cardiac application achieves 100% sensitivity and
80% specificity on an additional datasetﬂ without retraining. The pipeline produces improved
results in reconstruction quality over the previous work[4], which used a non-hierarchical
VAE+MLP pipeline.

2.4.2 Cardiac Segmentation with Strong Anatomical Guarantees

In 2020, Painchaud et al. proposed a VAE-based pipeline for automatic correction of cardiac
segmentations[6]. The method involves training a VAE that takes in a segmentation mask and
identifies anatomically invalid shape then warps them to the nearest valid shape. At in-
ference time, the trained VAE is appended to an existing segmentation model to ensure the
inference pipeline produces anatomically valid segmentations.

Figure presents the train and inference pipeline. The authors use a constrained
VAE[30], with the constraint being a 1-neuron linear network yp, (-) trained simultaneously with

9Automated Cardiac Diagnosis Challenge, MICCAI 2017[14]
10The authors define a list of anatomically invalid configurations. For example, for a short-axis segmentation,
this includes hole(s) in the left ventricle, right ventricle or myocardium.
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Figure 2.12: Top diagram presents training pipeline that trains a VAE to learn latent repre-
sentations of gold standard anatomically valid segmentations. The latent space is augmented
with more valid representations by linearly interpolating between valid vectors and perform-
ing small translations. This latent space is used to correct anatomically invalid segmentations
at inference time via warping to the nearest valid shape (bottom diagram). The segmentation
method refers to any existing segmentation method.[6} p. 3]

21



2.4. SHAPE ENCODING CHAPTER 2. BACKGROUND

the encoder-decoder. This forces the learned latent space to be more linear and less convo-
luted, so close points in the latent space correspond to similar reconstructed shapes, which is
important for the correction step. The loss function (2.11) is made up of the ELBO and the L2
loss of the constraint.

ZLO,¢;x) = Eg,zin [log po(x12)] - Dir. [q¢(ZIx)|Ipe(Z) + 1y, (2) - tlI* (2.11)

Overall, the pipeline can correct anatomically invalid segmentations without detrimenting
performance of various segmentation models (as measured by Dice coefficient, Hausdorff dis-
tance and ejection fraction of right and left ventricles).

The fact that the proposed pipeline does not improve segmentation performance while cor-
recting inaccuracies is surprising. A possible explanation is that some quality is lost during the
reconstruction stage, which is made up for by the corrections. Furthermore, the framework
only uses linear interpolation between valid latent encodings to generate synthetic samples for
warping. It does not make use of generating samples from the assumed prior only, and hence
the augmented latent space is potentially limited. Using a more expressive model such as a
hierarchical VAE could improve reconstruction and generation quality to address both short-
comings.

2.4.3 Probabilistic U-Net

In 2018, Kohl et al. proposed the Probabilistic U-Net[7], a segmentation framework that can
provide multiple hypotheses for a single image. In practice, computer vision tasks are often
ambiguous. For example, given a CT scan the region of a lesion that is cancerous is subject to
inter-observer variability. A model that outputs multiple segmentation maps can provide more
information for a clinician to recommend further action than traditional deterministic models.
Furthermore, the Probabilistic U-Net can model the joint probability of all pixels in a segmenta-
tion. This improves upon models that can only provide pixel-wise probabilities, which ignores
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Figure 2.13: The Probabilistic U-Net framework, depicting (a) the sampling process, and (b) the
train process. For each execution, a single z is sampled to predict a mask. Blue blocks denote
feature maps. Green arrows denote loss. During training, a posterior net is used to recognise
segmentation variants and map them to a position (distribution) in the latent space.[7, p. 2]
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co-variance between pixels. The framework achieves state-of-the-art performance among ex-
isting probabilistic methods in lung lesion segmentation as well as natural image segmentation
tasks.

The framework extends a U-Net[56] by introducing a Conditional VAE that learns a low-
dimensional latent space to encode the segmentation variants (Figure 2.13). The hierarchical
space is interleaved with the U-Net decoder. At inference time, random samples in the latent
space levels are injected into the U-Net to produce various segmentation hypotheses.

In 2019, Kohl et al. extended the Probabilistic U-Net to the Hierarchical Probabilistic U-
Net[8], which uses a CVAE with a hierarchical latent space. This results in improved fidelity,
particularly in modelling fine details of lesion shapes, allowing the model to perform well in
more complex tasks like instance segmentation.

2.4.4 Anatomically Constrained Neural Networks for Cardiac Imaging

In 2017, Oktay et al. proposed the Anatomically Constrained Neural Network (ACNN) for multi-
modal cardiac imaging[9]. Previous existing segmentation methods involve training a model
at a pixel-wise level where the objective (cross-entropy) does not involve shape and structure
information. ACNN introduces a shape regularisation term to the objective, which allows shape
information to be injected into a neural network, encouraging it to learn global anatomical
features.

One application involves integrating a convolutional autoencoder f with a segmentation
model ¢ (Figure[2.14). During training, ¢ outputs a predicted mask j given a scan, and f learns
a low-dimensional latent representation of y, as well as the ground truth y.

The loss formulation is presented in (2.12). The shape loss (scaled by hyperparameter A,)
is the distance between the latent encodings of j y. x is the scan, and w denotes convolution
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Figure 2.14: Anatomically Constrained Neural Network (ACNN): Training pipeline for image
segmentation tasks. The encoder f is a convolutional autoencoder network that is trained end-
to-end with the segmentation model ¢.[9, p. 4]
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weights and is a weight-decay term.

A
L(0,A1,A2;x,y) = CE(, ) + Ml fo () — fo I3+ ?Zn wll? 2.12)

The autoencoder acts as a regularisation model to constrain the segmentation model towards
learning global anatomical features, allowing it to be more robust against imaging artefacts,
noise and slice misalignment. ACNN outperforms previous existing models in segmenting the
endocardium and myocardium in 2D cardiac MRI scans, as well as the left ventricle cavity in 3D-
US cardiac image sequences. Overall, ACNN demonstrates the benefits of incorporating prior
shape information into mainstream neural network architectures. As the work uses a single-
layer autoencoder with limited capacity, it remains to explore the full potential of using prior
information from more expressive models like hierarchical VAEs.

2.5 Concluding Remarks

We have overviewed a selection of works on generative models, with a focus on the develop-
ment of VAE frameworks due to their ability to learn an explicit compact representation of com-
plex data. Automated learning of such representations is an active area of research in the medi-
cal imaging domain, and we have reviewed and criticised key works that leverage shape encod-
ing for cardiac imaging tasks, including improving interpretability of classifying pathologies|5],
automatic correction of segmentation masks[6], probabilistic segmentation[7,/8] and using the
learned representations to enforce anatomical constraints[9].

The reviewed works demonstrate the importance of shape encoding for cardiac imag-
ing. A shared limitation is the use of single-layer VAEs, which has limited expressive power.
Indeed, Kohl et al. presents improved results in using hierarchical VAEs for probabilistic
segmentation[8].

In particular, the Nouveau VAE framework[13] has shown promising results in producing
both high fidelity reconstructions and generations, suggesting it is capable of learning stronger
latent representations more suitable for downstream tasks. An open challenge, therefore, is to
explore the potential of NVAE when applied to cardiac imaging.
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Chapter 3

Data Analysis

We will primarily be using the Automated Cardiac Diagnosis Challenge (ACDC) dataset[14]. The
challenge was introduced during the MICCAI 2017 conference and aims to promote research in
developing automated methods for segmenting and classifying cardiac MRI scans.

We will also be using the Multi-Centre, Multi-Vendor & Multi-Disease Cardiac Image Seg-
mentation Challenge (M&Ms) dataset[15}/16]. We use this dataset for domain adaptation exper-
iments by transferring learnings from the ACDC dataset. The M&Ms challenge was introduced
during the MICCAI 2020 conference and provides cardiac imaging data from multiple clini-
cal centres and acquisition protocols to promote research in developing robust, generalisable
models across different clinical settings.

3.1 Data Overview

The ACDC dataset consists of 150 cardiac cine-MRI scans in the short-axis orientation, obtained
over a 6-year period at the University Hospital of Dijon (France). A manual segmentation of the
left ventricle (LV), right ventricle (RV) and myocardium (MYO), jointly annotated by 2 medical
experts, is provided for each scan. The M&Ms dataset includes 320 publicly available short-
axis cine-MRI scans obtained from 5 centres in Spain and Germany, with segmentation labels
for the LV, RV and MYO, manually annotated by an expert from the centre of origin. In addi-
tion, the M&Ms dataset provides 25 unlabelled scans, which we will not use. It also provides 30
additional scans from a 6th centre in Canada that is not publicly available.

For both datasets, each scan includes an end-diastolic (ED) and end-systolic (ES) frame.
Each frame consists of a stack of 2D slices. The number of slices differs per scan, averaging
around 10 per frame. We have previously presented a slice preview (Figure[2.8). We will use the
manually annotated masks as the ground truth (GT) for our experiments.

3.1.1 Study Population

ACDC - The study population consists of 150 patients categorised into 5 pathologies. Each
patient contributes 1 MRI scan. The study population has been partitioned into a train set and
a test set. The train set has 100 patients, with 20 patients from each class. The test set has 50
patients, with 10 patients from each class.
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M&Ms - The study population consists of 320 patients categorised into 9 pathologies. Each
patient contributes 1 MRI scan. The study population has been partitioned into a train set,
validation set and test set, with varying number of patients from each centre and class.

Appendix[A|provides details on class and centre distribution.

3.2 Preprocessing

3.2.1 Pipeline

ACDC - We perform preprocessing to produce a dataset where each data point is an MRI slice
with its corresponding GT segmentation mask. Width, height and voxel spacing of each slice
are consistent across the same frame and patient, but differs between patients. We standardise
the dimension to 128 x 128 pixels with the following algorithm.

1. Crop and pad: For each frame, we compute the coordinates of the smallest bounding box
such that for all masks, all information (LV, RV, MYO) is contained within it. Let this box
have dimensions w x h. Without loss of generality, assume w = h. We crop each slice and
mask to (w +4) x (w +4) around the centre, with 4 pixels of padding on each side.

2. Resize: Each cropped slice and mask are resized to 128 x 128 with nearest-neighbour in-
terpolation.

3. Rescale intensity: We perform min-max scaling on each slice by clipping to the [1,99]
intensity percentiles, then linearly mapping to the range [0,1]. This helps resolve pixel-
level artefacts introduced during acquisition.

4. One-hot encode mask: At this stage, each mask has shape 128 x 128 with 4 unique val-
ues: 0 (background), 1 (RV), 2 (MYO) and 3 (LV). We one-hot encode each mask to
4 x128 x 128.

Since the bounding box is computed per frame and not per slice, voxel spacing is the same for
all slices within the same patient, but may differ between patients.

(a) Preprocessed data (b) Preprocessed data without crop-and-pad

Figure 3.1: Preprocessed slices and masks from the ACDC dataset. The GT mask (overlayed with
opacity) segments the slice into the LV (yellow), RV (blue), MYO (green).
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Figure presents a preview of the preprocessed data points. It also presents the slices
with the crop-and-pad stage omitte to illustrate data sparsity in the unprocessed dataset.
For the latter, the masks consist of 95.3% background across the train and test set, reduced to
65.9% with crop-and-pad. Filtering part of the background is a standard preprocessing step to
encourage models to focus on the structures of interest: LV, RV and MYO. Furthermore, we do
not want the background to dominate the reconstruction loss during model training.

M&Ms - We apply the same preprocessing pipeline as ACDC. Volumes from the M&Ms
dataset may contain an empty slice-wise data point, where both the MRI slice and the mask
are empty. We filter such occurrences from all partitions.

More previews of ACDC and centre-specific M&Ms data can be found in Appendix[E.1}

3.2.2 Data Partitioning

ACDC - The pipeline yields 2,978 data points: 1,902 from the train set and 1,076 from the test
set. We further partition the train set into a smaller train set and a validation set with a 9:1 split
(1,711 and 191 data points respectively).

M&Ms - The pipeline yields 6,880 data points: 3,089 from the train set, 754 from the validation
set and 3,037 from the test set.

3.2.3 Segmentation Class Distribution

Each segmentation mask has 4 classes: RV, MYO, LV and background. Across the ACDC dataset,
34.1% of the pixels are non-background: 11.2% RV, 11.9% MYO and 11.0% LV.

Figure[3.2] presents a heatmap of the class distribution.
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All RV v MYO

Figure 3.2: Heatmap of segmentation class distribution across the ACDC dataset. The colour of
each pixel denotes the percentage that it is occupied by the class.

Across the M&Ms dataset, 27.3% of the pixels are non-background: 8.58% RV, 9.50% MYO
and 9.19% LV.

3.2.4 Other Remarks

Out of the 1,711 data points in the ACDC train set, 55 have empty mask Indeed, these can
be observed in Figure[3.1] This is due to the clinical protocol to not segment ambiguous slices.

1But with original aspect ratio retained by cropping to min(width, height).
2Masks with only background.
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These are often basal and apical slices. The basal slice is the topmost slice representing the
base of the hear and the apical slice is the last slice with visible ventricular cavity. As such,
the dataset imposes a challenge for segmentation models to recognise and not segment these
slices.

The disparity in class distribution between ACDC and M&Ms is due to a significantly higher
prevalence of empty masks in M&Ms: 1,591 out of 6,880 data points (21.8%). The class distri-
bution among non-empty masks in M&Ms is similar: 35.3% of the pixels are non-background,
with 11.0% RV, 12.4% MYO and 11.9% LV.

The heatmap in Figure reveals slight misalignment. In particular, the RV is angled to-
wards the top-right corner. On top of this, initial experimentation suggests that some VAE mod-
els struggle with generating diverse synthetic masks. To address both issues, we tried adding
alignment registration by rotating the masks in the preprocessing pipeline, and rotation aug-
mentation at train time. However, neither additions improved (nor worsened) overall perfor-
mance, so we decided to omit them.

3.3 Cardiac Shape Anatomical Validity

We discuss a systematic approach to determine whether a cardiac segmentation mask is con-
sidered anatomically valid. From this, we can compute the percentage of anatomically valid
masks in a set, or % AV. This gives us (1) a metric for evaluating generation quality of generative
models, and (2) a metric, along with Dice coefficient, for evaluating quality of segmentation
models, among other use cases.

3.3.1 Methodology

We use a fixed set of criteria designed for short-axis cardiac masks from Painchaud et al.[6]. A
mask is considered anatomically invalid if it has any of the following: (1) hole(s) in the LV, RV or
MYO, (2) hole(s) between LV and MYO, (3) hole(s) between RV and MYO, (4) more than 1 LV, RV
or MYO, (5) RV is disconnected from MYO, (6) LV touches RV, (7) LV touches background.

3.3.2 Validity of Dataset

ACDC - Out 0f 2,978 masks in the dataset, 18 masks are anatomically invalid. 100% of the invalid
masks are present in the original, unprocessed dataset and not caused by resolution downsam-
pling in the preprocessing pipeline. 17 masks are invalid due to having an extra RV that is a few
pixels wide (Figure[3.3a). The other invalid mask is a basal slice (Figure[3.3c).

All segmentation masks are gold standard annotations by medical experts. The criteria pro-
vides a strong guideline but does not guarantee correct classification. We choose to preserve
all masks and use the percentage of valid masks in the dataset (99.4%) as a gold standard for
generative models to aim for.

M&Ms - Only 69.3% of the masks are valid. This percentage becomes 69.1% for the unpro-
cessed dataset, so resolution downsampling in the preprocessing pipeline does not contribute

3The Society for Cardiovascular Magnetic Resonance (SCMR) classifies the top slice with >50% myocardium
around the blood during ED phase as the basal slice[57].
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(a) (b) (©

Figure 3.3: Examples of anatomically invalid masks from ACDC: (a) a mask with an extra RV, (b)
a zoomed-in view of the extra RV, and (c) a mask of a basal slice; it is invalid as the LV touches
the background.

to a lower % AV. Table[3.1|presents a summary and Figure[3.4]presents an example. The invalid
masks are due to pixel-level violations of the criteria, rather than global corruptions.

Centre
1 2 3 4 5 All

%AV 86.3 556 53.7 764 632 693

Table 3.1: % anatomical validity of the M&Ms dataset across each centre.

(@ (b)

Figure 3.4: An anatomically invalid mask from M&Ms: (a) a mask with holes between the RV
and MYO, and (b) a zoomed-in view.
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Chapter 4

Experiments

This chapter is organised as follows. Firstly, we describe our setup for cardiac shape encoding
with VAE frameworks. This consists of single-layer VAE models and Nouveau VAE. The per-
formance of the former is used as a baseline benchmark. Secondly, we present a downstream
application of the learned latent representations by using them to formulate a shape regularisa-
tion term to train an anatomically constrained cardiac segmentation model. We use the ACDC
dataset for the experiments listed above. Finally, we apply the same segmentation framework
with data from a different source to investigate whether the learned representations can be used
for domain adaptation and few-shot learning. For this task, we use the M&Ms dataset.

4.1 Baseline Models for Shape Encoding

We use 3 approaches to train baseline models, all of which use the same single-layer VAE archi-
tecture. The first approach uses 8-VAE loss. The second approach uses InfoVAE loss, and uses

an auxiliary discriminator to approximate Dgy, [q¢(z) [lpo (z)] . The third approach also uses In-

foVAE loss, but uses minibatch sampling to approximate Dg, [q¢(z) [lpo(2)].

4.1.1 Architecture Overview

The single-layer VAE architecture is adapted from the framework proposed by Painchaud et
al.[6]. The overarching principle of the architecture is that of a standard encoder-decoder net-
work (Figure Figure [2.3). During training, each model takes a one-hot encoded cardiac
segmentation mask as input and outputs its reconstruction.

Figure [4.1| presents the architecture. The encoder consists of 4 blocks, followed by an FC
layer that outputs the mean and log variance. Each block consists of two 3 x 3 convolutional
layer with ELU activation. The first convolutional layer has a stride of 2 and doubles the number
of feature maps. The decoder has a similar but reversed structure.

4.1.2 Implementation Details

B-VAE is a framework that builds on top of VAE by extending the ELBO with a KL weight term.
The objective is presented in (2.3). Its drawbacks are discussed in Section|2.1.3, which motivates

30



CHAPTER 4. EXPERIMENTS 4.1. BASELINE MODELS FOR SHAPE ENCODING

4 x 128 x 128 4 x 128 x 128

4 x 128 x 128

48><64><64f
48><64><64ﬁ
96><32><321
96><32><32ﬁ
192><16><161

48><64><64@
96 x 32 x 32 ‘

96 x 32 x 32

192 x 16 x 16

192 x 16 x 16

v
¥
v
55 N

384 x8x8 @

192 X 10 lﬁﬁ ; conv 3 x 3 (stride 2), ELU

384 x 8% 8 f @COHV3><3,ELU

; flatten, linear

linear, unflatten
L& A timear,

> 2~ N, 0?) f conv transpose 3 x 3 (stride 2), ELU

Encoder Decoder

Figure 4.1: VAE architecture for baseline models. A white box represents a feature map (or
input/output tensor), with its shape denoted on the top-left corner. A coloured arrow denotes
an operation or sequence of operations. d is the dimensionality of the latent space. It is a
tunable hyperparameter.

the InfoVAE framework (Section [2.1.4). Its objective is presented in (2.6). We implement this
in two ways: by approximating Dgr q¢(z)||p9(z)] with an auxiliary discriminator, and with

minibatch sampling. The former is proposed by the authors of InfoVAE[33]. We derive the
latter below; it is similar to how TC is estimated in -TCVAE (Section[2.1.3).

qe(2)
Dicc|ap@lips(2)| = fohp(Z)log P
(n)
CI(P( " ) n) - (Z)
o (z™) 99

HZI

(log%( (n)) log po (z(n)))

We refer to the discriminator approach as InfoVAE-D and the minibatch approach as InfoVAE-
M. For InfoVAE-D, we design a 3-layer MLP discriminator with hidden dimension 8 and leaky
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Fixed Tunable

Hyperparameter Value Hyperparameter Value
Batch size 16 Latent dimension 2-64
Optimiser Adam  -VAE: 8 0.01-10,000
Learning rate 6x 107> InfoVAE: 0-5
Weight decay 1072 InfoVAE:y 1-10,000
InfoVAE-D Discriminator

Optimiser Adam

Learning rate 6x107°

Weight decay 1072

Table 4.1: Hyperparameter configurations for training baseline models. Only a subset of hyper-
parameters are tuned due to time constraints. Untuned parameters have not been systemati-
cally searched for optimal settings and are marked as “Fixed”; tuned parameters are marked as
“Tunable” with the range of searched values. InfoVAE refers to both InfoVAE-D and InfoVAE-M.

ReL.U activation (slope 0.2).

Generation process: Producing synthetic masks at inference time requires no additional
data. We sample a latent vector from the prior: z ~ A(0, I), then pass it through the decoder to
obtain the synthetic mask (Figure|2.2b).

At inference time, the output X is discretised by applying the argmax function to each pixel
to obtain a non-probabilistic reconstruction (or generation).

Apart from the difference in loss formulation, the training procedure of the 3 approaches
is the same. Table[4.1|presents the configurations. We train for 50 epochs and take the model
checkpoint with the lowest validation loss.

4.2 Nouveau VAE for Shape Encoding

4.2.1 Architecture Overview

We design two architectures for cardiac shape encoding, which we refer to as Default-N and
LatentSkip-N. Both are adapted from the original work[13].

Figure [4.2| presents the Default-N architecture, which takes in a one-hot encoded cardiac
segmentation mask and outputs its reconstruction. Each architecture consists of a stem, en-
coder, decoder and conditional coder. The stem is a 3 x 3 convolutional layer that maps the
4-channel input to a projected space. This helps prevent an initial bottleneck that may cause
early information loss. The conditional coder maps the projected space back to the original
space. The Default-N encoder-decoder consists of a series of preprocess/postprocess blocks,
followed by a shared 3-layer tower with 3 latent spaces. The LatentSkip-N encoder-decoder
consists of a 5-layer tower, with every other layer having an explicit latent space. The number of
feature channels double at each layer, including preprocess layers. See Section[4.2.2 for details.
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Figure 4.2: NVAE Default-N architecture. A white box represents a feature map (or input/output
tensor), with its shape denoted on the top-left corner. A coloured arrow denotes an operation
or sequence of operations. c is the projected channels. # is a learnable parameter. The encoder
and decoder combiner cells are designed to take in 2 feature maps and combine them together,
using a 1 x 1 convolutional layer to match the number of channels. LatentSkip-N has a similar
structure, except with 1 preprocess/postprocess block and a 5-layer tower with 3 latent spaces.

4.2.2 Implementation Details

The majority of our implementation matches the original work[13], which is reviewed in Sec-
tion[2.2.2] In this section, we focus primarily on specific configurations for cardiac shape en-
coding, as well as any modifications to the framework. We also cover important mechanisms
from the original work in more detail.

Residual block: We adopt the design from the original work[13]. The encoder residual block
consists of 2 sequential encoder cells and the decoder residual block consists of 2 sequential
decoder cells (Figure[2.7).
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Residual parameterisation: Similar to other VAE frameworks, Dk  is computed using the
reparameterisation trick. However, the shared encoder-decoder network allows z; to be sam-
pled from a residual distribution that combines the layer-wise prior pg(z;|z<;) and layer-wise
variational posterior, the latter of which is derived from the combined feats via the encoder
combiner cell. The layer-wise approximate posterior gy (z;|x;, z<;) is defined as this residual
distribution.

Po(zilz<;) :JV(,U(Z<i),0'(Z<i))) (4.1)
dp(zilxi, z<i) = N (1(z<i) + Aplz<i, %), 0(2<i) A0 (24, X)) 4.2)

At test time, we use deterministic samplin to output the most accurate reconstruction.

Loss formulation: Our baseline results reveal InfoVAE to not improve upon ,B—VA For
NVAE, we extend the 3-VAE ELBO loss such that each divergence term is scaled separately (see
(4.3)). Each scaling factor is annealed from 0 to 8; over a warm-up period, where g; is a tunable
constant. The spectral regularisation term is omitted for clarity; we have implemented it with a
static weight term as an optional configuration.

(4.3)

3
LO,¢, b5 %) = Egy 210 [log po(x12)] = Y~ BiViEgyzeiin | DxL [%(Zilxi,Z<i)|IP9(Zi|Z<i)]
i=1
Yi is a dynamic balancing coefficient that is active during the warm-up period. Itis proportional
to the KL term of layer i as well as the size of the latent space. This mechanism is adopted from
the original work[13].

Sharing information: The combiner cells play a crucial role in the sharing of information
between the encoder and decoder. We mentioned how the encoder combiner cell allows the
formation of a residual distribution that combines the prior and approximate posterior. The
decoder path involves forming x; by combining the learned initial representation & with the
latent vector z; via the decoder combiner cell. Subsequent layers involve combining x; with
zi+1 to form x;4;. This mechanism is analogous to the original work[13].

Generation process: Producing synthetic masks at inference time requires no additional
data. It involves traversing the decoder path with the following changes: (1) z; is sampled from
the top prior A7(0, I), and (2) for each latent layer we take z ~ A (up, 0%). That is, the distribu-
tion is based purely on the prior.

Clamping: We find setting projected channels to a small number to have stable training.
However, as noted previously, this may cause an early information bottleneck. To combat this,
we propose a mechanism called clamping: at any point, if the feature map channels are less
than 16, set it to 16. For example, if the channels in the preprocess layers are 4 — 8 — 16 — 32,
it becomes 16 — 16 — 16 — 32.

At inference time, the output X is discretised by applying the argmax function to each pixel
to obtain a non-probabilistic reconstruction or generation.

Table |[4.2|presents the configurations for training Default-N and LatentSkip-N. We train for
100 epochs and take the model checkpoint with the lowest validation loss.

1, _
z=[g

2Quantitative results are presented in Table E
361=0.9, 82 =0.999
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Fixed Tunable
Hyperparameter Value Hyperparameter Value
Warmup epochs 30 b1 1-20
Batch size 8 B2 1-20
Optimiser Adamax®} ¢ =103 B3 1-20
Learning rate 1072
Weight decay 3x1074
Scheduler Cosine annealing, Nmin = 1074
Latent channels 20
Projected channels 4

Default-N LatentSkip-N
# Tower layers 3 5
Latent layers index 1,2,3 1,3,5
# Groups per layer 1,2,4 1,2,2,4,4
Spatial dims per latent layer 42,8%,162 42,16%,64%
Preprocess layers 3 1

Table 4.2: Hyperparameter configurations for training NVAE models. Only a subset of hyperpa-
rameters are tuned due to time constraints. The upper half presents shared configuration for
both Default-N and LatentSkip-N. Untuned parameters have not been systematically searched
for optimal settings and are marked as “Fixed”; tuned parameters are marked as “Tunable” with
the range of searched values. Topmost layer is indexed as 1.

4.2.3 Other Considerations

The Default-N and LatentSkip-N architecture perform best out of various designs we worked
with. For example, using multiple 3 x 3 convolutional layers in the preprocess/postprocess
stage gives better results than using a single 9 x9 convolutional layer. Furthermore, using
groups of 1, 2, 4 in the 3-layer tower is more effective than using groups of 2, 4, 8. We find
instance normalisation to perform worse than batch normalisation with the equivalent archi-
tectural designs. However, alternative methods were not explored thoroughly due to time con-
straints, in particular long training times.

4.3 Cardiac Segmentation with Shape Loss

We investigate a downstream application by using the learned latent representations of an
NVAE model to formulate a shape regularisation term that regulates training a U-Net for cardiac
segmentation. The motivation is described by Oktay et al.[9] (Section. To summarise, a
U-Net is conventionally trained with cross-entropy loss, which is a pixel-wise loss and thus poor
at capturing global shape information. By adding a regularisation term that is based on learned
latent representations of GT segmentation masks, we introduce an anatomically constrained
U-Net that is more attentive to the cardiac structure as a whole.
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4.3.1 Implementation Details

We use the original U-Net architecture proposed by Ronneberger et al.[56], except we also add
batch normalisation after each convolution layer for train stability (Figure[4.3).

Loss formulation: Let x be the input scan, y the ground truth segmentation mask and j
the predicted (probabilistic) mask. The baseline is trained with cross-entropy loss. This is pre-
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Figure 4.3: U-Net architecture. A white box represents a feature map (or input/output tensor),
with its shape denoted in the corner. A coloured arrow denotes an operation or sequence of
operations.

36



CHAPTER 4. EXPERIMENTS 4.3. CARDIAC SEGMENTATION WITH SHAPE LOSS

Pretrained NVAE
U-Net — —> —> Latent Encodings
(Frozen) (2)
z y
X l l
—— Cross Entropy(y, 9) Shape Prior(z, z2) —
Pretrained NVAE T
—> —> Latent Encodings
(Frozen) (2)
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Figure 4.4: ACU-Net pipeline. x is the input scan (slice), y is the GT mask and j is the predicted
mask. Red arrows denote backpropagation for U-Net training.

sented in (4.4), with width W, height H and number of classes C.

W H C

CE= Z Z Z (.Vw,h,clogf/w,h,c) (4.4)

w=1h=1c=1
For our anatomically constrained U-Net, which we refer to as ACU-Net, we add a shape loss to
the objective. We take a frozen, pretrained NVAE model and obtain the latent representations
of y and y as z and Z respectively. Each representation consists of 7 group-level latent Vectorsﬂ

which we denote as z = [zl S 27] and zZ = [21 ‘e 27L Each latent vector is defined as the mean

of the corresponding residual distribution, z; = u; f’} The objective is presented in (4.5) and the

pipeline is presented in Figure[4.4,
7
3(9;9N,(/)N,a,x,y):aCE+wZ||z,-—2i||§ (4.5)
i=1

We use the L2 norm for the shape loss, as we find the NVAE latent representations to have an
empirically linear relationship with their corresponding reconstructionsﬁ a is a tunable hyper-
parameter that weights the effect of cross-entropy with respect to the shape loss. w is a fixed
constant that scales the shape loss relative to cross-entropy. In short, cross-entropy is often
orders of magnitude larger than the shape loss, so w is set to a large value to make a easily in-
terpretable. For our chosen pretrained NVAE model, we set w = 126717 so that a =1 results in
equal contribution from both cross-entropy and shape loss. See Appendix[B.1]for details.

Data augmentation: We apply random horizontal flip: the scan and mask are reflected
across the y-axis with 50% probability. Data augmentation is applied during train time only. We
investigated other augmentation techniques like random noise, gamma correction and equali-
sation, but did not find improved performance.

Table [4.3| presents the configurations. We train for 100 epochs and take the model check-
point with the lowest validation loss.

4Corresponding to the latent groups of NVAE; see Table E

SThis process is analogous to NVAE reconstruction at inference time: the same latent vectors are obtained and
passed through the decoder tower to yield the reconstruction. See Sectionfor details.

bSee Sectionin the Evaluation chapter.
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Fixed Tunable

Hyperparameter Value Hyperparameter Value
Batch size 32 a 0-1,000
Optimiser Adam

Learning rate 1x1073

Weight decay 0

# Layers 5

Table 4.3: Hyperparameter configurations for training U-Net models. Only a subset of hyperpa-
rameters are tuned due to time constraints. Untuned parameters have not been systematically
searched for optimal settings and are marked as “Fixed”; tuned parameters are marked as “Tun-
able” with the range of searched values.

4.3.2 Shape Loss Requirements

Similar to B-VAE, NVAE has a trade-off between reconstruction and generation quality caused
by the strength of its regularisation terms. ACU-Net requires the NVAE model to have strong
generative capabilities with solid reconstruction capabilities, for which we provide an explana-
tion as follows.

The shape loss as presented in (4.5) measures the distance between latent representations
of the GT mask and the predicted mask. In early stages of training, the predicted mask will
have poor quality. Strong generative capabilities ensure that poor quality synthetic masks are
very rarely produced, hence the latent representation of the predicted mask is many standard
deviations away from the assumed prior. Following similar reasoning, the latent representation
of the GT mask is close to the mean of the prior. Therefore, z; and Z; are far apart, and the U-
Net model is penalised heavily by the shape loss. Likewise, in later stages of training, the U-Net
output is of higher quality and z; and Z; are closer together, reducing the penalty.

In the above explanation, we assume the latent representation is an accurate representation
of the corresponding mask. This is only guaranteed if the NVAE model has solid reconstruction
capabilities, as the reconstruction is unambiguously defined by the latent representation.

4.4 Domain Adaptation and Few-Shot Learning

In Section we introduce the ACU-Net framework with a shape regularisation term. This
term is based on the learned latent representations of an NVAE model pretrained on the ACDC
dataset. We investigate whether the anatomical information encoded in the latent space can be
transferred to a different domain, including an environment where little training data is avail-
able. In this section, we apply the ACU-Net framework to the M&Ms dataset.

4.4.1 Domain Adaptation

The experimental pipeline involves taking the ACU-Net model pretrained on the ACDC dataset
as configured by Table[4.3|and finetuning it on the M&Ms dataset with (4.5). We perform fine-
tuning with batch size 16 and 50 epochs. The baseline experiment takes the U-Net model pre-
trained on ACDC and finetunes it on M&Ms with cross-entropy loss.
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Centre # Train Slices # Validation Slices % AV (Train & Validation)

1 93 11 100.0
2 81 9 75.6
3 93 11 57.7
4 99 11 74.5
5 116 13 70.5

Table 4.4: M&Ms dataset: Few-shot learning data statistics. Presenting number of data points
and % anatomical validity.

4.4.2 Few-Shot Learning

The M&Ms dataset is an aggregate collection of samples from 5 different centres with varying
quality and acquisition protocols. A comprehensive breakdown of the dataset is provided in
Table[A.1b of Appendix/Al

We investigate few-shot learning for centre-specific segmentation. We select a small subset
from the M&Ms dataset to simulate a small data, domain gap scenario. For each centre, we
select 5 subjects from the pre-partitioned train and validation sets that (1) attempt to cover the
range of pathologies via stratified sampling, and (2) with the highest % AV. Then, we extract
the slice-wise data points and re-partition a smaller train and validation set with a 9:1 split.
On average, each subject has 20 slices (10 slices per phase), resulting in approximately 90 data
points for training and 10 for validation. Table[4.4]presents the details. Each model is finetuned
on 5 subjects from a single centre.

The experimental pipeline involves taking the ACU-Net model pretrained on the ACDC
dataset, then performing few-shot finetuning with batch size 16 and 50 epochs. The base-
line experiment is taking the U-Net model pretrained on ACDC and few-shot finetuning it with
cross-entropy loss.

A concern with the above pipeline is that during finetuning, the model may overfit to the
small number of data points. We mitigate this by taking the model checkpoint with the lowest
validation loss. However, due to the small validation set, it is difficult to perform early stopping
effectively. Therefore, we also explore a parallel set of experiments with the following pipeline:
we take the ACDC-pretrained model and immediately use it for centre-specific evaluation. Ef-
fectively, we perform zero-shot inference, which guarantees that the features learned from the
ACDC dataset do not get depreciated by the small, potentially volatile M&Ms dataset. This is
analogous to linear probin when finetuning a pretrained model for classification tasks, which
has been shown to give improved results over finetuning the entire model[58,/59].

"Freezing a pretrained model and finetuning the linear classifier head only.
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Chapter 5

Designing a Robust Metric for Evaluating
Quality of Synthetic Cardiac Masks

The Fréchet Inception Distance (Section is the standard metric for evaluating quality of
synthetic images. Previous literature has shown FID to be an effective, reliable metric when ap-
plied in the natural image domain. However, we work with cardiac segmentation masks, which
differ significantly from natural images. We find FID to be unreliable when used to evaluate syn-
thetic masks. To our knowledge, no work exists that proposes a metric for such domain-specific
evaluation: synthetic masks that are not conditioned on subject-level image or scan, and as
such, metrics like Dice coefficient (DSC) are inapplicable for measuring generative capabilit

We propose Fréchet ResNet Distance with SimCLR (FRDS), a novel metric that measures the
similarity between synthetic and real cardiac masks. This chapter discusses our work on FRDS,
which adapts FID by replacing the Inception-v3 network with a pretrained ResNet model. We
use the ACDC dataset for our experiments.

5.1 Methodology

5.1.1 Baseline Metric

FID acts as a baseline for quantitative evaluation of quality of generated cardiac masks. Each
data point is a one-hot encoded mask represented as a 4 x 128 x 128 tensor (Section[3.2.1): in
particular, it has 4 channels corresponding to the RV, MYO, LV and background. However, FID
uses Inception-v3 which is designed for RGB image inputs. We transform the masks into RGB
images with the following algorithm.

1. Remove background: We remove the background channel from the mask. At this stage,
we conveniently have 3 channels: RV corresponds to red, MYO to green and LV to blue.

2. Rescale values: The channels are rescaled to have the ImageNet mean and standard de-
Vl'atio as FID uses Inception-v3 pretrained on ImageNet.

! Although DSC is useful for measuring reconstruction capability of variational autoencoders.
2= [0.485 0.456 0.406] o= [0.229 0.224 0.225
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3. Resize: The masks are upsampled to 299 x 299 pixels with bilinear interpolation as re-
quired by Inception-v3.

Computing FID involves comparing the synthetic dataset X’ with the real dataset X. We
define X to be the test set with 1076 masks. Then, we generate the same number of synthetic
masks. We apply the above algorithm to both the real and synthetic masks, then compute FID
as described in Section[2.1.6!

5.1.2 SimCLR Pretraining

We hypothesise that the problem which causes FID to be inconsistent for cardiac masks is using
a model pretrained on natural images. Certainly, the images in ImageNet differ significantly
from segmentation masks in general; the most notable being the discrete colour space and
gradient of masks. Therefore, we propose to replace Inception-v3 with a model pretrained on
cardiac masks, and keep the rest of the algorithm unchanged.

For pretraining, we use A Simple Framework for Contrastive Learning of Visual Representa-
tions (SimCLR) [58,59], a self-supervised contrastive learning framework for pretraining a con-
volutional neural network (CNN). The CNN learns representations by comparing similarities
between augmented views of the same data point, and contrasting differences between views of
different data points. Within self-supervised frameworks for CNNs, SimCLR achieves state-of-
the-art performance in various downstream tasks like image classification[59], which testifies
its ability to learn robust representations.

Figure presents the train workflow; we adopt the same notation from the figure. For
downstream tasks, g is discarded and only f is kept. The authors use ResNet-50[60] as f; we
use a smaller ResNet-18 model, as segmentation masks are less complex than natural images.
Since ResNet takes RGB images as input, we transform the one-hot encoded masks into RGB

Maximize agreement

Z; = > Zj
90)] o0
h; <— Representation — h;

Figure 5.1: SimCLR train workflow. SimCLR is self-supervised so it uses unlabelled data. In-
stead, within each batch, for each image x it creates a positive pair: 2 augmented views X;, X;.
The views are fed into a CNN f without an FClayer to produce embeddings h;, h;. During train-
ing, the embeddings are projected to a lower dimensional space using a small MLP g, and the
entire model tries to match the embeddings of the positive pair z;, z;.[58} p. 2]
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images with the following algorithm before applying augmentations.

1. Remove background: Similar to Section|5.1.1, we remove the background channel from
the mask.

2. Rescale values: We rescale the values from [0, 1] to [—1, 1] for train stability.

The choice of data augmentations is crucial for ResNet-18 to learn robust representations.
The authors propose a fixed sequence: random crop and resize, random colour distortion,
Gaussian blur. In particular, crop and resize forces the model to learn scale invariance (con-
volutions are already translation equivariant), and colour distortion prevents the model from
exploiting the colour space to match positive pairs.

We design a custom augmentation pipeline and describe it as an ordered sequence of affine
transformations. The transformations are defined as matrices using homogeneous coordinates.

1. Random rotation: Rotate the mask by a randomly chosen angle.

cosfd —-sinf O
R=|sinf cosf6 O 0 ~ Uniform(—m, )
0 0 1

We introduce rotation for the cardiac imaging domain specifically, because structure rota-
tion and alignment are not indicative of heart disease, but rather caused by the cine-MRI
procedure. We want to dissuade the model from learning this and instead focus on more
indicative features.

2. Random horizontal flip: The mask is reflected across the y-axis with 50% probability.

¢ ~ Uniform(0,1)

oS = O

0
0 c<0.5
1

1 otherwise

I is the identity matrix.

3. Random crop and resize: Take a random square subset of the image and expand it to
the original size (which defines the values of the translation factors #y, ;) with nearest
neighbour interpolation.

0
sty s ~ Uniform(0.8,1)
0

Then, an augmented view is definedas X =C-H-R- x.

Figure|5.2| presents the effect of the augmentation sequence. We choose to omit (1) colour
distortion, as all masks have the same colours of red, green, blue and black, and (2) Gaussian
blur, as we want to penalise generative models that produce smooth, blurry images. Other
considerations are discussed within Section5.2.4.
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Figure 5.2: Effect of data augmentations for SImCLR pretraining. Each column depicts a mask
as an RGB image. Row 1: original. Rows 2, 3: augmented views.

Hyperparameter Value

Epochs 200

Batch size 256

Latent dimension 512

Projected dimension 128

Loss InfoNCE, 7 =0.07
Optimiser AdamW

Learning rate 5x107*

Weight decay 1074

Scheduler Cosine annealing, nmi, = 107°

Table 5.1: Hyperparameter configurations for SimCLR pretraining. The batch size refers to the
number of pairs; there are 512 masks in each batch. A large batch size is crucial for learning
robust representations.

We adopt the hyperparameters from the SImCLR paper. Table|5.1|presents the full configu-
ration. The authors propose InfoNCE loss, which is based on Noise Contrastive Estimation and
uses cosine similarity ((5.1), batch size 2N).

exp (sim (zi, zjlr))

l,‘,j =—log (5.1)

YN 1z exp (sim (2, zk/r))

5.1.3 Computing FRDS

Atinference time, we discard the projection head g and use the backbone f, which is a standard
ResNet-18 model without the FC layer. f acts as the feature extractor.

To get the embedding from a one-hot encoded mask, we use the same algorithm as in pre-
training (Section [5.1.2) but without applying augmentations: (1) remove background channel
from mask, (2) rescale to [-1, 1]. Then, we pass the transformed mask through the backbone to
get the 512-dimensional embedding.

The rest of the calculation is the same as FID, except that we use 512-dim vectors instead of
2048-dim vectors. See Section[2.1.6 for details.
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5.2 Evaluation

Figure[5.3|presents SImCLR pretraining graphs. In particular, the top-5 accuracy reaches 100%
after 97 steps (13 epochs), while the top-1 accuracy continues to increase. Therefore, we use the
model checkpoint with the highest top-1 accuracy.

We evalute the performance of FRDS in 3 ways: (1) whether it corrects the inconsistencies
of FID in practice, (2) with a custom test suite of various disturbances applied at different levels
of intensity to the masks, and (3) by analysing the output embeddings of the pretrained model.
Both FRDS and FID are distance metrics, so a lower value indicates better generation quality.

0.9 -

0.7 - 0.8-

0.7 -

04- 0.6 -

—— Top-1 Accuracy 0.5 - —— Top-5 Accuracy

0 200 400 600 800 1000 1200 1400 0 200 400 600 800 1000 1200 1400
Step Step

(a) Top-1 accuracy (b) Top-5 accuracy

Figure 5.3: Top-1 and top-5 accuracy graphs for SimCLR pretraining measured with validation
set. Metrics are determined by computing the cosine similarity between all data points within
each batch, then for each postive pair, whether the similarity is in the top 1 and top 5 respec-
tively.

(@ (b)

Figure 5.4: Example of FID inconsistency. (a) presents generations produced by a well-
configured InfoVAE-M model. The model produces anatomically valid masks with a 73.5% rate
and achieves 95.08 FRDS and 16.97 FID. (b) presents generations produced by a poorly config-
ured InfoVAE-D model with 16.1% anatomical validity. It has a poor 428.7 FRDS, but achieves a
strong FID of 15.50.
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5.2.1 Practical Results

Figure |5.4| presents 2 sets of synthetic masks generated by different VAE models. It illustrates
the practical inconsistencies of FID and how FRDS gives an evaluation that is more consistent
with empirical judgment.

To further illustrate this, we plot anatomical validity against FRDS and FID for a batch of
baseline models. These models are obtained during hyperparameter tuning, and thus range
from well-configured to poorly configured. Assuming FRDS is a reliable metric, we expect a
negative correlation between FRDS and anatomical validity. However, a model can also gener-
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(a) Anatomical validity against FRDS. Models with FRDS > 300 are filtered.
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(b) Anatomical validity against FID. Models with FID > 25 are filtered.

Figure 5.5: Scatter plots of anatomical validity against FRDS and FID for a batch of baseline
models with varying quality.
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ate with high validity rate and have high FRDS if (1) the model experiences mode collapse and
produces low diversity generations, or (2) the model produces anatomically valid but blurry or
impractical shapes. Therefore, we expect the plot to form a shape resembling an upper trian-
gular matrix. Figure|5.5|presents the plots. Indeed, we do observe this phenomenon for FRDS.
Meanwhile, the FID plot does not indicate any meaningful correlation with anatomical validity.

However, FRDS is not an ideal metric. We observe that FRDS is poor at penalising synthetic
masks that have eroded or chipped edges (Figure 5.6). We hypothesise this may be caused by
using crop and resize augmentation in pretraining, which may introduce chipped edges in the
augmented views. In Section [5.2.4, we discuss other augmentation pipelines, such as replac-
ing crop and resize with zoom-out. However, these alternative designs do not outperform the
current FRDS metric in practical results, test suite results and embedding analysis.

5.2.2 Disturbance Test Suite

To measure the robustness of FRDS, we design a test suite that applies disturbances to the test
set at various intensity levels. Then, we measure the FRDS between the undisturbed train set
and the disturbed test se The desired outcome is to observe a positive correlation between
FRDS and intensity level.

We apply 4 classes of disturbances: average smoothing, black box crop, elastic deformation,
pepper noise. Each class has 4 intensity levels. See Appendix|[C|for details.

Evaluation results are presented in Table[5.2| We observe for both FRDS and FID that (1) the
values increases with intensity level, and (2) the values never decrease below the gold standard
of 12.9 for FRDS and 4.51 for FID. The only exception is FRDS with elastic deformation at inten-
sity level 1. Overall, this suggests that both metrics are capable of distinguishing between high
and low quality masks, including small deteriorations in quality.

3Since the train set has 1902 data points and the test set has 1076, we downsample the train set by choosing a
fixed random subset of 1076 train data points to compute FRDS.

(@) (b)

Figure 5.6: Example of FRDS inconsistency. (a) presents generations produced by a well-
configured NVAE Default-N model. The model produces anatomically valid masks with a 95.9%
rate and achieves 43.10 FRDS. (b) presents generations produced by a poorly configured NVAE
LatentSkip-N model with 50.6% anatomical validity. However, it achieves a strong 41.39 FRDS.
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FRDS FID

Disturbance Intensity Level Intensity Level

1 2 3 4 1 2 3 4
None 12.9 4.51
Average smoothing 14.5 15.0 15.5 15.9 743 821 8.5 8.67
Black box crop 16.1  28.1 73.4 186.0 6.19 21.6 625 123.6
Elastic deformation = 9.20 23.4  282.1 3881 8.62 144 49.0 1489
Pepper noise 13.3 224  267.7 1496 4.78 16.9 31.1 33.0

Table 5.2: FRDS and FID values between train set and disturbed test set for 4 classes of distur-
bances at increasing intensity levels.

5.2.3 Embedding Analysis

In Figure the top-1 and top-5 accuracies are very high which suggest potential overfitting.
We investigate the embeddings produced by the model to ensure that there is no presence of
overfitting and the model learns meaningful representations. As a baseline, we also present the
corresponding embeddings of the pretrained Inception-v3 for FID.

For a set of masks, we compute the 512-dimensional embedding as described in Sec-
tion[5.1.3| Then, we apply principal component analysis (PCA)[61] with 2 components, fitted
with the train embeddings. This achieves an explained variance of 0.42 for the embeddings
used to compute FRDS and 0.68 for the embeddings used to compute FID.

Since FRDS uses the Fréchet distance, the ideal scenario is that embeddings of the train,
test and realistic synthetic masks are not well separated and interleave with each other, while
embeddings of the poorly generated masks are separated from the rest. This would mean that
the Fréchet distance is low between the test and realistic synthetic masks, and high between the
test and poorly generated masks.

To acquire realistic synthetic masks, we select a baseline VAE model that empirically gener-

42048-dim embeddings for FID.

(a) Test set (b) Good generations (c) Bad generations

Figure 5.7: Preview of high quality generations from a well-configured VAE model and low qual-
ity generations from a poorly configured VAE model, alongside masks from the test set.

47



5.2. EVALUATION CHAPTER 5. FRDS

40 - . o o Test «  Test .
Train 8-« Train o

30 -

20 -

10 -

-10 -

-20 -

-10 0 10 20 30 -10 -5 0 5 10

(a) FRDS: Test and train sets (b) FID: Test and train sets
Test o Test .
Good 8- < Good .7..

30 -

20 -

10 -

—10 -

20-
7‘10 (I) 1‘0 2‘0 3‘0
(c) FRDS: Test set and good generations

Test

60 - o
. ® o 3o - Bad

50 -
40 -
30-
20 -
10 -
0-

—10 -

—20 -

- I10 (IJ 1‘0 2‘0 3‘0 4‘0 5‘0 - I10 - 5 (I) F; 1‘0
(e) FRDS: Test set and bad generations (f) FID: Test set and bad generations

Figure 5.8: PCA visualisations of FRDS and FID embeddings compared between various data
partitions. x-axis: component 1, y-axis: component 2. Each plot has 1076 data points from
each set. Good generations refer to masks generated by a well-configured VAE model, while
bad generations refer to masks generated by a poorly configured model. Note that the poorly
configured model occasionally generates realistic masks; vice versa.
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ates high quality masks. We also select a poorly configured VAE model to acquire low quality
masks. Examples of these masks are shown alongside real data in Figure Note that the
poorly configured model occasionally generates realistic masks.

Figure[5.8|presents the PCA visualisations for the FRDS and FID embeddings on various data
partitions. We make several observations. Firstly, the FRDS embeddings of the train and test
sets interleave well without forming 2 distinct clusters. This indicates that the model has not
overfitted to the train set. Secondly, the FRDS embeddings of the test set and good generations
also interleave, but there is a distinct separation from the bad generations. This is also seen
in the FID embeddings with less clarity, suggesting the model used for FRDS is more effective
in distinguishing between realistic and unrealistic data. Finally, the 2 principle components
for FRDS embeddings have a larger variance than that of FID embeddings. For the former, the
components of realistic data lie in the range [-20,40] while for the latter, the range is [-10, 15].
Therefore, we expect FRDS values to be relatively larger than FID values, and the absolute values
of the two metrics are not directly comparable.

5.2.4 Other Considerations

We hypothesise that the poor ability of FRDS to recognise eroded edges in masks is amplified
by the crop and resize augmentation in pretraining. However, we did not find improvement
in replacing crop and resize with zoom-out augmentation. We also briefly investigated elastic
deformation as a possible augmentation technique, but dropped it as it might affect the learned
contours, which are indicative of heart disease.

For the embedding analysis (Section, we attempted to use t-SNE[62] instead of PCA. t-
SNE is a non-linear dimensionality reduction technique that has the potential to preserve more
information with the same number of components. However, we found the results to be less
interpretable than PCA, despite testing various perplexity and iteration values. This could be
due to t-SNE’s tendency to group data points into clusters, but in some settings we expect the
embeddings to interleave.

5.3 Concluding Remarks

We design a novel metric for evaluating quality of generated cardiac masks, which we term
Fréchet ResNet Distance with SimCLR (FRDS). We evaluate FRDS in a variety of settings and
find it to give more consistent, robust results than FID. We observe that FRDS struggles with
recognising eroded masks as poorly generated, and suggest using it in conjunction with another
metric that makes up for this weakness, such as the percentage of anatomically valid masks.
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Chapter 6

Evaluation

6.1 Shape Encoding

6.1.1 Results

We perform quantitative evaluation as follows. Each model outputs 1076 reconstructed masks
(corresponding to ACDC test set) and randomly generates 1076 synthetic masks with the as-
sumed prior. Quality of synthetic masks are measured by FRDS, with X and X’ being the test set
and synthetic set respectively. % AV (anatomical validity) measures the set of synthetic masks.
In particular, while training has been conducted on a per-slice basis, we measure reconstruc-
tion quality with the 3D Dice coefficient (DSC) across the 3D volume (see Appendix[D.1). We
compute DSC by comparing the reconstructed volume segmentation (stack of masks) to the
ground truth.

Table[6.1presents the results of NVAE compared to baseline models. Each row corresponds
to the configuration for a framework that gives best overall performance. Since there is a trade-
off between reconstruction and generation quality, we present 3 strong NVAE configurations.
Our downstream task (Section [4.3) favours high quality, anatomically valid generations, so the
best model is bolded: Default-N without clamping nor spectral regularisation. This model sig-
nificantly improves upon baseline metrics: 0.078 DSC increase for reconstructions, as well as

Baseline Model DSC FRDS % AV
All RV MYO LV

B-VAE 0.882 0.893 0.847 0.907 876 745

InfoVAE-D 0.891 0.901 0.858 0.916 89.7 725

InfoVAE-M 0.871 0.875 0.832 0906 61.2 64.3

NVAE Model Clamp SR

Default-N No No 0.969 0.976 0.953 0.978 33.2 96.5

Default-N Yes Yes 0989 0.990 0.984 0993 374 859

LatentSkip-N No No 0.999 0.999 0998 0999 831 72.0

Table 6.1: Quantitative metrics for NVAE and baseline models on the ACDC dataset.
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Baseline Model # Parameters (M) Latent Dimension [ ~
B-VAE 4.6 8 100
InfoVAE-D 4.6 8 0 100
InfoVAE-M 4.6 8 0 200
NVAE Model Clamp SR 31 B2 B3
Default-N No No 2.0 10 9 8
Default-N Yes Yes 2.1 1 1 1
LatentSkip-N No No 1.6 1 1

Table 6.2: Tuned parameters for the models presented in Table For the rest of the configu-
rations, see Table (NVAE) and Table (baseline).

28.0 FRDS increase and 22.0% anatomical validity increase for generations. The hyperparame-
ter configurations are presented in Table[6.2]

For reconstruction at component level, we observe a trend present in both NVAE and base-
line models: LV has the most accurate reconstructions, followed by RV then MYO. This trend
exists even for very strong reconstruction models (>0.98 DSC across every component). It is
also observed in existing segmentation models[14]. Since NVAE and VAE models are trained
with the masks only, we conclude that the difficulty of the components are partly due to the
shape of the components themselves, and not caused solely by the scan intensity. We speculate
this is due to the torus topology of the MYO, and the high variability of the RV shape.

We further investigate the performance of the best NVAE model by analysing its reconstruc-
tion quality per phase and per pathology (Figure [6.1]and Figure [6.2). The model has a slightly
higher performance for RV and LV at the ED phase, and for MYO at the ES phase. This is also
observed in existing segmentation models[14], suggesting this phenomenon is also caused by

1.00 -

. ED
B ES
0.98 -
0.96 -
Q
2]
(a)
0.94 -
0.92 -
0.90 - i ] 0 ]
All RV MYO v

Components

Figure 6.1: Comparison of reconstruction quality of masks at ED and ES phases of top NVAE
model.
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Figure 6.2: Comparison of reconstruction quality of top NVAE model for the different patholo-
gies in the dataset. Abbreviations stand for previous myocardial infarction (MINF), dilated car-
diomyopathy (DCM), hypertrophic cardiomyopathy (HCM), abnormal right ventricle (ARV).

the shape of the components. We observe that the model is robust to the various pathologies
in the dataset. Interestingly, it has the highest RV performance for patients with abnormal right
ventricle, suggesting that some pathologies may be easier to segment. However, the differences
are very small (+ 0.01 DSC).

Unless otherwise specified, subsequent sections will focus on evaluating the top NVAE
model.

6.1.2 Reconstruction and Generation Visualisations

Figure [6.3| presents a visual comparison of the original and reconstructed masks produced by
NVAE, compared to the §-VAE baseline. The improvement in reconstruction quality is strikingly
evident: NVAE is able to reconstruct masks with a very thin margin of error. Figure[6.4 presents
a random batch of synthetic masks generated by NVAE and -VAE. 3-VAE (and other baseline
models) often produce pixel-wise anatomical inconsistencies, which can be empirically ob-
served when zoomed in. NVAE is able to produce anatomically valid generations without such
inconsistencies. Furthermore, NVAE produces more diverse and detailed masks, as can be seen
in the RV shapes. Appendix[E.2|provides more visualisations.

6.1.3 Temperature

Temperature 7 is a hyperparameter at inference time that controls the diversity of generated
samples. In particular, it scales the standard deviation of the prior. The generations presented
in this chapter are produced with 7 =1. As the models are trained with a standard Gaussian
prior, this means the prior is unchanged at inference.

In practice, 7 <1 is often used. This forces the model to sample from higher probability
regions of the latent space, which can lead to more stable generations at the cost of some di-
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NVAE VAE NVAE VAE
Ground Truth Reconstruction Reconstruction Incorrect Pixels Incorrect Pixels

Figure 6.3: Visualisations of reconstructed masks of top NVAE model and 3-VAE. Red indicates
incorrectly reconstructed pixels.

(a) NVAE generations (b) B-VAE generations

Figure 6.4: Visualisations of generated masks of top NVAE model and 3-VAE.

versity loss[63]. The authors of NVAE use 7 € {0.5,0.7} for complex datasets[13]. However, we
find that (1) 7 = 1 produces high quality, anatomically valid generations, and (2) T < 1 improves
% AV but significantly detriments generation diversity. As such, we stick with 7 = 1 at inference.
Figure[6.5presents the results.
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T FRDS % AV

1.0 332 958
09 563 976
0.8 90.6 97.9
0.7 137.6 99.0
0.6 201.4 993
0.5 294.1 99.9

(a) Effect of T on FRDS and % anatomical validity (b) Preview of generations with 1 = 0.5

Figure 6.5: Effect of temperature 7 on generation quality of top NVAE model.

6.1.4 Learned Latent Space

Figure 6.6/ presents the marginal KL divergence per group. If the KL divergence is 0, then the
distributions g4 (z;|x, z<;) and pg(z;|z<;) are identical. This indicates posterior collapse, as the
posterior does not use the current sample x to encode z;. The figure shows that none of the
latent groups have collapsed, as all marginal KLs remain significantly above 0. This justifies
our use of all groups in formulating the shape loss in the downstream segmentation task (Sec-
tion4.3).

At inference time, reconstructions are computed with deterministic sampling from the
residual distributions, which means the reconstruction of an existing mask is defined unam-
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Figure 6.6: Marginal KL divergence per group of top NVAE model during training. The first 10
epochs (2140 steps) are omitted for clarity.

54



CHAPTER 6. EVALUATION 6.1. SHAPE ENCODING

Figure 6.7: Latent traversal of top NVAE model. In each row, the first and last columns are
reconstructions of existing masks, and the columns in between are reconstructions of linearly
interpolated vectors.

biguously by its latent representation. Therefore, we can perform latent traversal by linearly
interpolating between the latent vectors of 2 masks, then obtaining the reconstructions by
traversing the decoder path. Figure presents the results. Empirically, the shape changes
smoothly and gradually as it interpolates between a pair of masks. In some examples, there are
more abrupt changes in the RV (middle of last row).

We perform an ablation study to investigate the contribution of each latent layer by turning
them off during reconstruction and generation. By default, all 3 layers are active. 2 active lay-
ers refers to the topmost and middle layers, and 1 active layer refers to the topmost layer only.
If a layer is inactive during reconstruction, the decoder does not draw information from the
approximate posterior. That is, z is sampled from A (u,, o). If a layer is inactive during gen-
eration, z is set to u, instead of being sampled from A (uy, o). Tablepresents the results.
The topmost layer encodes smooth, global features, while the other two layers build on this by
encoding detailed, fine-grained features to form more refined, intricate shapes. These refined
features result in better reconstructions for all cardiac components and generation diversity
(FRDS), but also cause slightly lower anatomical validity in generations. This can be observed

# Active Layers DSC FRDS % AV
All RV MYO LV
3 0.969 0.976 0.953 0.978 33.2 96.5
0.935 0938 0915 0.952 41.0 98.6
1 0.873 0.865 0.848 0.907 586 99.6

Table 6.3: Effect of turning off latent layers on reconstruction and generation performance of
top NVAE model.
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Ground Truth 3 Active Layers 2 Active Layers 1 Active Layer 3 Active Layers 2 Active Layers 1 Active Layer
(a) Reconstructions (b) Generations

Figure 6.8: Visualising the effect of turning off latent layers on reconstructed masks and gener-
ated masks, using top NVAE model. (a) The same original sample is used within each row. (b)
The same latent vector is used within each row.

in row 4 of Figure[6.8a, where the model reconstructs the RV with 3 active layers, but fails with
1 or 2 active layers. In row 3 of Figure the model refines the RV shape with 3 active lay-
ers. Overall, the model performs best from having all 3 latent layers active. Furthermore, with
1 active layer, the model is still capable of producing outputs with quality comparable to (and
exceeding) the single-layer baseline models.

6.1.5 Increasing KL Weight Term

Figure[6.9)presents the effect of increasing  on NVAE performance. We present findings for the
LatentSkip-N architecture, but similar trends are observed for the Default-N architecture. Fig-
ure and Figure[6.11]presents sample visualisations. We observe a larger  leads to smoother
outputs. This is expected as  controls regularisation strength. As a result, the generated masks
are more stable and anatomically valid, at the cost of some loss in detail. It also causes de-
terioration in reconstruction quality. This results in a trade-off between reconstruction and
generation quality, and the best f is dependent on the downstream application.

This phenomenon is also observed in baseline modeld'}

1 8 for B-VAE and y for InfoVAE.

56



CHAPTER 6. EVALUATION 6.2. CARDIAC SEGMENTATION WITH SHAPE LOSS

1.00 -

° _.__:—--""'.""“'1-!\_.
0.9 L o --% °
-7 °
0.99 - L
o /’{ °
0.98 - = 0.8- //
= Vs
> -
3 0.97- S A
o o7
2
©
0.96 - <
R
0.6
0.95 -
0.94- 05- o o
1 3 5 7 9 11 13 15 17 19 1 3 5 7 9 11 13 15 17 19
B B
(a) DSC against (b) % AV against

Figure 6.9: Effect of increasing f on reconstruction quality (DSC) and % anatomical validity of
generations, for the LatentSkip-N architecture.

B=1 B=18 = B=18

Ground Truth Reconstruction Reconstruction Incorrect Plxels Incorrect Pixels

Figure 6.10: Visualisations of reconstructed masks for the LatentSkip-N architecture, with =1
and f = 18. Red indicates incorrectly reconstructed pixels. Best seen when zoomed in.

57



6.2. CARDIAC SEGMENTATION WITH SHAPE LOSS CHAPTER 6. EVALUATION

@ p=1 (b) B=18

Figure 6.11: Visualisations of generated masks for the LatentSkip-N architecture, with § =1 and
B = 18. The difference in smoothness is best seen when zoomed in.

6.2 Cardiac Segmentation with Shape Loss

6.2.1 Results

We perform quantitative evaluation with the ACDC test set of 1076 (slice, mask) pairs. % AV
measures the set of output segmentations. Similarly, while training has been conducted on a
per-slice basis, we measure segmentation quality with the 3D Dice coefficient (DSC) across the
3D volume.

Table presents the results of ACU-Net compared to the U-Net baseline. In addition,
we include the results of the best 2D U-Net framework from MICCAI 201 by Baumgartner et
al.[64], which also uses cross-entropy loss. We find that (1) our baseline results align with Baum-
gartner et al. (within £0.006 DSC in all classes), and (2) ACU-Net matches the performance of
U-Net in DSC, while achieving a 5.3% increase in anatomical validity (p < 0.01. This increase
could be attributed to using the NVAE latent vectors as a shape regularisation term, which en-
forces a more global shape consistency compared to the pixel-wise cross-entropy loss.

We further investigate by analysing the segmentation quality per phase and per pathology.
Figure [6.12a and Figure presents the DSC plots. ACU-Net is able to match U-Net per-

2The challenge that introduced the ACDC dataset.
3 p-value as computed by Welch's ¢-test; see Appendix

Model DSC % AV
All RV MYO LV

Baumgartner et al. 0.908 0.897 0.937

U-Net 0.915+0.001 0.909+0.002 0.894+0.001 0.943 +£0.001 84.3 +1.37

ACU-Net 0.915 £ 0.001 0.907 £ 0.001 0.893 +£0.001 0.944 +0.001 89.6 + 0.65

Table 6.4: Quantitative metrics for cardiac segmentation models on the ACDC dataset. ACU-
Net is trained with a@ = 1. For U-Net and ACU-Net, 5 models are trained with different seeds
(but same configuration and train-validation split), and the mean metrics with standard error
are reported.
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Figure 6.12: Comparison of segmentation quality of ACU-Net and U-Net for different phases
and pathologies. Presenting mean DSC with standard error bars.
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Figure 6.13: Comparison of anatomical validity of output segmentations of ACU-Net and U-Net
models for different phases and pathologies. Presenting mean % AV with standard error bars.

formance across both ED and ES phases, and across all pathologies. Both ACU-Net and U-Net
have relatively lower performance for HCM condition; however, NVAE does not have a specific
bias towards any pathology (Figure[6.2). This suggests that the scan intensity may contribute
to the difficulty of segmenting patients with HCM, although the differences are subtle (+0.03
DSC). Figure[6.13a and Figure[6.13b| presents the % AV plots. ACU-Net is able to produce more
anatomically valid segmentations across all phases and pathologies compared to U-Net, espe-
cially for patients with a diagnosed condition.

6.2.2 Segmentation Visualisations

Figure presents a visual comparison of the output segmentations of ACU-Net and the
ground truth. In general, the model is able to produce anatomically valid masks that accurately
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(a) (b)

Figure 6.14: Visualisations of output segmentations of ACU-Net on the ACDC dataset. Present-
ing (a) random samples, and (b) some of the worst samples.

segment the RV, MYO and LV. We also showcase some of the worst output segmentation Akey
weakness of ACU-Net, which is also observed in U-Net, is that it struggles to determine whether
the slice is a basal or apical slice (or otherwise ambiguous), for which the experts leave the an-
notated mask empty. However, the model may attempt to segment said slice. Conversely, the
model may output an empty mask for a slice that is meant to be segmented. Only 55 out of 1711
train data points and 75 out of 1076 test data points have empty masks, so this is not a critical
issue when using the ACDC dataset. The model is also more likely to struggle with segmenting
the components when they are smaller.

6.2.3 Shape Loss Weight

We find a =1 to perform best for ACU-Net. This suggests that the cross-entropy loss and the
shape loss have equal importance.

ACU-Net performs well when both cross-entropy and shape regularisation terms are
weighted. We find that when the cross-entropy term is removed (a = 0), the model is still able
to match U-Net performance in DSC (within +0.002), but the output segmentations are only
51.5% anatomically valid. It is difficult to determine the exact cause, but we speculate that
the model requires both local (cross-entropy) and global (shape loss) information to train opti-
mally.

4< 0.4 DSC when measured per slice.
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6.2.4 Domain Adaptation and Few-Shot Learning

We perform quantitative evaluation for U-Net and ACU-Net trained on the full domain-agnostic
M&Ms dataset. Table[6.5|presents the results. Overall, ACU-Net is able to match U-Net perfor-
mance in DSC, with a slight increase in % AV (p <0.05). In particular, ACU-Net has a 4.9%
increase in anatomical validity for Centre 1 (p < 0.014). This suggests that the shape loss, which
uses the latent vectors pretrained on ACDC, is most effective for Centre 1.

By investigating the pathology distribution of the ACDC and M&Ms datasets (Table[A.1), we
find there are 4 overlapping conditions: Healthy, HCM, DCM, ARV. There is exactly one cen-
tre from M&Ms that have subjects with all 4 conditions in both train and test sets: Centre 1.
We speculate that this similarity in subject conditions may contribute to the effectiveness of
the shape loss for Centre 1. That said, there are many factors that can affect performance and
generalisation, for example, the acquisition protocol differs between each centre and dataset.

We summarise our experiments for domain adaptation as described in Section (1)
We take the ACDC-pretrained model and finetune with the entire M&Ms dataset, (2) we take
the ACDC-pretrained model and finetune with 5 centre-specific subjects (few-shot learning)
to produce centre-specific models, and (3) we perform zero-shot inference with the ACDC-
pretrained model. To gauge the effectiveness of using the ACDC-pretrained model, we perform
a fourth experiment pipeline: we train U-Net and ACU-Net models from scratch with 5 centre-
specific subjects. The 4 experimental settings are labelled as (1) Centre-Agnostic Finetuning, (2)
Few-Shot Finetuning, (3) Zero-Shot Inference and (4) Few-Shot (No Pretraining). Figure[6.15
presents ACU-Net performance comparisons between them. Centre-Agnosting Finetuning is
the only set of experiments that uses all available training data without being constrained to
a few-shot setting, and it performs best overall, suggesting that the model has the capacity to
learn from all centres. Zero-shot Inference matches Centre-Agnosting Finetuning in DSC and
% AV for some centres, and performs slightly worse for others. This suggests that the pretrained
ACU-Net model transfers well to the M&Ms dataset. This is further supported by how few-shot

Model Centre DSC % AV
All RV MYO LV
1 0.870 £ 0.003 0.873 £ 0.004 0.815+0.004 0.923 £0.002 83.2+1.26
2 0.872 +£0.001 0.877 +£0.001 0.844 +0.001 0.895+0.003 81.9+0.35
U-Net 3 0.885 + 0.002 0.872 +£0.003 0.871 £0.002 0.912 +£0.001 85.7 +0.42
4 0.849 +£ 0.002 0.825 +£0.002 0.824 +£0.002 0.898 +0.002 82.3 +£0.25
5 0.866 + 0.002 0.871 +0.001 0.830 +£0.003 0.899 +0.004 81.6 +0.83
All 0.865 + 0.002 0.859 +0.001 0.835+0.002 0.903 +0.002 82.7+0.43
1 0.873 £ 0.003 0.873 £0.006 0.820 +£0.004 0.926 +0.002 88.1 +£0.72
2 0.869 + 0.002 0.876 + 0.002 0.842 + 0.002 0.889 +0.001 82.1 +0.78
ACU-Net 3 0.885+ 0.002 0.870 £ 0.004 0.872 £0.002 0.913 £0.002 85.3 +1.05
4 0.846 + 0.003 0.825 + 0.002 0.817 +£0.004 0.897 +£0.004 84.4 +0.87
5 0.862 + 0.003 0.872 +0.002 0.822 +0.004 0.893 £0.003 84.6 +1.11
All 0.863 + 0.002 0.858 + 0.003 0.831 +£0.003 0.900 +0.002 84.7 +0.68

Table 6.5: Quantitative metrics for cardiac segmentation domain adaptation experiments on
the M&Ms dataset. Each experiment is repeated 5 times and mean metrics with standard error

are reported.
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Figure 6.15: Comparison of segmentation quality of ACU-Net for different experimental settings
across the centres. Presenting mean DSC and % AV with standard error bars.

learning from scratch performs significantly worse than the finetuned models. Finally, zero-
shot inference outperforms few-shot learning, suggesting that finetuning with a small dataset
is volatile and degrades the features learned from ACDC pretraining.

Table[6.6]presents the quantitative results of zero-shot inference. Overall, ACU-Net matches
U-Net performance in DSC (+0.003 DSC), with an average 5.2% increase in anatomical validity
across all centres (p < 0.03 for Centres 1, 3, 4). We find that ACU-Net performs similarly across
previously seen and unseen pathologies (Figure|[6.16).

Model Centre DSC % AV
All RV MYO LV

U-Net 1 0.829 +£ 0.002 0.844 +0.003 0.751 +£0.005 0.894 + 0.003 76.0 +1.67
ACU-Net 1 0.827 £ 0.001 0.837 +£0.005 0.747 +0.004 0.898 + 0.003 83.2 + 1.06
U-Net 2 0.858 + 0.001 0.864 +0.002 0.834 +0.001 0.876 +£0.003 76.4 +1.64
ACU-Net 2 0.858 £ 0.002 0.864 +0.004 0.831 +0.001 0.880+0.002 81.1+1.38
U-Net 3 0.882 + 0.002 0.872 +0.005 0.861 +0.001 0.912+0.002 81.6+1.43
ACU-Net 3 0.882 + 0.001 0.874 +£0.001 0.857 +0.001 0.915+0.002 86.5+0.78
U-Net 4 0.855 + 0.001 0.831 +0.003 0.833 +£0.001 0.899 +£0.002 79.6+1.18
ACU-Net 4 0.855 + 0.002 0.831 £0.002 0.832+0.001 0.901 +0.003 84.9+ 0.58
U-Net 5 0.847 + 0.003 0.841 £ 0.005 0.822 +0.003 0.879 +0.004 71.5+2.24
ACU-Net 5 0.850 £ 0.002 0.839 +0.003 0.822 +0.004 0.888 +0.005 75.5+1.53

Table 6.6: Quantitative metrics for cardiac segmentation zero-shot experiments on the M&Ms
dataset. U-Net: Take ACDC-pretrained U-Net model. ACU-Net: Take ACDC-pretrained ACU-
Net model. Each experiment is repeated 5 times and mean metrics with standard error are
reported.
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Figure 6.16: Comparison of segmentation quality of ACU-Net and U-Net for zero-shot infer-
ence. Presenting mean DSC and % AV with standard error bars. C1-C5: Centres 1-5. Seen: using
test subset consisting of subjects with conditions seen during ACDC training (Healthy, HCM,
DCM, ARV). Unseen: conditions not seen during ACDC.
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Figure 6.17: Visualisations of output segmentations of ACU-Net trained on ACDC, performing
zero-shot inference on the M&Ms dataset. Presenting (a) random samples, and (b) some of the
worst samples.

(b)
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Figure[6.17|visualises the output segmentations of ACU-Net performing zero-shot inference
on M&Ms, compared to the ground truth. Samples are selected from all 5 centres. The model
is capable of producing accurate segmentations despite not having seen the M&Ms dataset. It
shares the same weaknesses as seen previously on the ACDC dataset: it can output a segmen-
tation when the GT segmentation is empty, and vice versa. However, 21.8% of the M&Ms data
points have empty masks, over 3 times as frequent as the ACDC dataset. On top of that, some
GT masks may segment only one or two components (for example, only the RV, or only the RV
and MYO), which poses a challenge for the model.
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Chapter 7

Conclusion

7.1 Contributions

We revisit the objectives of this dissertation and summarise our contributions.

1. Evaluate NVAE’s capabilities in reconstructing existing segmentation masks and gen-
erating synthetic masks, compared to other VAE frameworks.

We propose a novel metric for evaluating quality of synthetic masks, the Fréchet ResNet
Distance with SimCLR (FRDS). FRDS measures the similarity between synthetic and real
cardiac segmentation masks, and is a more robust and consistent metric compared to
Fréchet Inception Distance and other existing methods. We evaluate with VAE and NVAE
models trained on the ACDC dataset[14] and demonstrate that FRDS aligns well with em-
pirical judgment of synthetic mask quality, but struggles with judging masks with eroded
boundaries.

We design 2 hierarchical architectures based on the NVAE framework for cardiac shape
encodin, and perform experiments on the ACDC dataset. The first architecture excels at
generating realistic synthetic masks, with 22.0% increase in anatomical validity compared
to single-layer VAE models, while offering a competitive reconstruction quality (0.969
DS compared to 0.891 DSC for single-layer VAE). Furthermore, it achieves a signifi-
cantly better FRDS of 33.2 (compared to 61.2). The second architecture excels at recon-
struction quality, achieving 0.999 DSC.

Compared to existing NVAE literature[13], our architectures have significantly less param-
eters and capacity. We demonstrate that a smaller model remains effective in learning
compact, robust cardiac shape representations.

2. Determine the extent to which NVAF’s latent representations of cardiac shapes can be
used to improve segmentation models.

We investigate a downstream task by introducing an anatomical constraint to the U-Net
segmentation model[56] in the form of a shape regularisation term, which we refer to as
ACU-Net. The shape loss uses the learned latent space of the pretrained, frozen NVAE

1Djice coefficient
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model to regularise the segmentation model and make it more attentive to the global
anatomical shape structure of the heart.

The introduction of a shape loss is not new: the concept is proposed by Oktay et al.[9].
However, we use a pretrained NVAE model while Oktay et al. use an autoencoder trained
end-to-end with the segmentation model. Using the ACDC dataset, we demonstrate that
the NVAE latent representations are effective in improving segmentation performance,
with 5.3% increase in anatomical validity compared to a non-anatomically constrained
U-Net while maintaining the same DSC.

3. Investigate the potential of using NVAE for domain adaptation and cardiac segmenta-
tion with few-shot learning.

We investigate domain adaptation and few-shot learning by applying the same ACU-Net
configuration to the M&Ms dataset[15} [16], which provides scans with different acquisi-
tion protocols and vendors.

We demonstrate that ACU-Net and the NVAE shape regularisation term remains effective
when applied to the M&Ms dataset and produces results superior to U-Net (up to 7.2%
increase in anatomical validity), despite the latent representations being trained only on
the ACDC dataset. With an ACU-Net model pretrained on ACDC, we find zero-shot in-
ference on M&Ms to outperform few-shot learning, with performance almost matching
ACU-Net finetuned on the entire M&Ms dataset.

7.2 Future Work

We address the limitations of our work and suggest possible directions for future research.
1. Datasets

A hard bottleneck on model performance is the correctness of ground truth segmenta-
tions provided by the ACDC and M&Ms datasets, as our models learn directly from them.
A point of concern is the low anatomical validity of the M&Ms dataset at 69.3%, which
is mainly caused by pixel-level violations of the anatomical constraints. Indeed, both
datasets are acquired from clinical sites and not curated specifically for research applica-
tions. We choose to leave the data as is to maintain the integrity of the original datasets.

2. Nouveau VAE Architecture

A key difference between our NVAE architectures for cardiac shape encoding and the con-
figurations proposed by the original authors[13] is that our architectures have less tunable
parameters and latent dimensions. This is primarily motivated by time and memory con-
straints, as well as to avoid overparameterisation on the ACDC and M&Ms datasets, which
we consider to be less complex than some of the experimental datasets[47,/48] used in the
original paper. Nonetheless, the authors observe that larger models tend to have better
performance, and given more time and resources, it would be worth investigating archi-
tectural changes such as more layers and groups.

3. Fréchet ResNet Distance with SimCLR

We have acknowledged that FRDS does not align perfectly with empirical judgement of
synthetic mask quality, especially for masks with eroded or chipped edges. As such, we
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suggest using a complementary metric like % anatomical validity, as well as manual in-
spection of the results to ensure the absence of corrupt judgment.

4. ACU-Net

We demonstrate the effectiveness of using the pretrained NVAE latent space to form a
shape loss for the U-Net segmentation model. Our formulation is a simple prototype and
can be extended in several ways, such as weighting each latent group with a separate hy-
perparameter, or incorporating the standard deviation of the latent residual distributions.

We provide a U-Net baseline for our ACU-Net experiments. If time permits, it would be
interesting to compare how ACU-Net with NVAE shape loss performs against a segmen-
tation model with a shape loss from VAE.

Future work involves addressing the aforementioned limitations, as well as applying the
NVAE framework to other downstream applications. For example, replacing LVAE with NVAE for
interpretable shape analysis and cardiac diagnosis[5], or using a conditional NVAE with a U-Net
for probabilistic segmentation[7, [8]. The NVAE framework can potentially be adapted for 3D
cardiac shape analysis by allowing volumetric inputs of a single subject. Finally, our methods
can be explored for segmentation of other anatomical structures and medical modalities, such
as those concerning brain or lung lesions.

7.3 Final Remarks

In this dissertation, we have demonstrated the effectiveness of the Nouveau VAE framework
in learning compact, robust representations of cardiac shapes. Compared to VAE models,
NVAE models improve significantly in both reconstruction quality (up to 0.108 DSC increase by
achieving 0.999 DSC) and synthetic mask generation (up to 28.0 decrease in FRDS and 22.0% in-
crease in anatomical validity). We propose a novel metric, FRDS, for evaluating synthetic mask
quality. Furthermore, we demonstrate the potential of the NVAE latent representations by using
them as a regulariser to improve segmentation models (5.3% increase in anatomical validity).
We show that these techniques can be used for domain adaptation and zero-shot inference on
a previously unseen dataset.

We hope our work contributes to the overarching vision of fully automated, interpretable
and accurate segmentation of cardiac scans and diagnosis of cardiac diseases in clinical prac-
tice.
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Appendix A

Dataset Details

A.1 Patient Conditions

ACDC - The study population consists of 150 patients categorised into 5 pathologies. Details
are provided in Table The classification rules are based on the measurements of volumes
and masses of the LV, RV and MYO, and can be found on the challenge sit

M&Ms - The study population of the full dataset consists of 375 patients categorised into 6
centres and 9 pathologies. However, data from the 6th centre in Canada is not publicly avail-
able due to legal reasons, comprising 30 patients. Furthermore, scans from 25 patients are un-
labelled; a corresponding ground truth segmentation is not provided. In this dissertation, we
use only the 320 labelled scans from the 5 centres in Spain and Germany. Details are provided

in Table

Thttps://www.creatis.insa-lyon.fr/Challenge/acdc/databases.html
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A.1. PATIENT CONDITIONS APPENDIXA. DATASET DETAILS

Centre

Pathology 1 2 3 4 5

Train 15 23 - 0 0

Healthy Validation 1 3 - 2 3

Test 5 7 - 9 11

Train 23 26 - 0 0

HCM Validation 2 2 - 2 4

Test O 9 - 3 11

Train 29 O - 0 0

DCM Validation 1 O - 0o 2

Test 7 0 - 0 7

Train O 1 - 0 O

HHD Validation 0 O - 4 0

Test O 3 - 6 1

Train 8 0 - 0 0

ARV Validation 0 O - 0 1

Test 4 0 - 2 0

Train 0 O - 0 O

AHS Validation 0 O - 1 0

Test O 0 - 0 0

Train O 0 - 0 0

IHD Validation 0 O - 0 O

Test O 0 - 3 1

Train O 0 - 0 0

LVNC Validation 0 O - 0 O

# Patients Test 0 0 - 0 2

Pathology Train Test Train 0 0 - 0 O
Healthy 20 10 Other Valldafrlon 8 8 - 11 0
MINF 20 10 est - 77
DCM 20 10 Train 75 50 25 0 O
HCM 20 10 Total Validation 4 5 5 10 10
ARV 20 10 Test 16 19 21 40 40

(a) ACDC (b) M&Ms

Table A.1: Study population statistics for ACDC and M&Ms datasets, organised by patient
pathology and data centre. Hyphen (-) indicates data not available; although, Centre 3 provides
Healthy, HCM and DCM subjects only. Pathologies are previous myocardial infarction (MINF),
dilated cardiomyopathy (DCM), hypertrophic cardiomyopathy (HCM), abnormal right ventri-
cle (ARV), hypertensive heart disease (HHD), athlete heart syndrome (AHS), ischemic heart dis-
ease (IHD), left ventricule non-compaction (LVNC).
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Appendix B

Architecture Details

B.1 ACU-Net Constant

The training objective of the ACU-Net is presented in (B.1).
4 2
z(H;HN;(PN,a,x,J/):aCE"‘wZ||Zi_2i||2 (B]‘)
i=1

In our experiments, we set w = 126717. To motivate this, we train (1) a baseline U-Net model
with cross-entropy loss, and (2) an ACU-Net model with the shape loss term only. The objective
of the latter is given by (B.2).

7
LO6;08,¢n, @, x,0) =Y ||2i - 25 (B.2)
i=1

During inference, both models achieve 0.91 DSC, so they are comparable. We find that over the
entire training stage, the train loss of ACU-Net (with shape loss only) is on average 126717 times
smaller than the train loss of U-Net (cross-entropy only). Figure presents the train graphs,
with the shape loss scaled to match the cross-entropy loss. Therefore, the goal of w in (B.1) is
to balance the two terms such that the tunable a weight can be easily interpreted: a = 1 means
that cross-entropy and shape loss have equal relative influence.

Note that the choice of w is dependent on the pretrained NVAE model.
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B.1. ACU-NET CONSTANT APPENDIX B. ARCHITECTURE DETAILS

—— Cross-Entropy
—— 126717 x Shape Prior
10000 -
8000 -
Y 6000 -
e}
=
4000 - K
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0 B 1 1 1 1 1 1
0 1000 2000 3000 4000 5000
Step

Figure B.1: Train loss graphs of U-Net trained with cross-entropy loss and ACU-Net trained with
shape loss only (a = 0). The shape loss is scaled by w = 126717 to match the cross-entropy loss.
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Appendix C

FRDS Disturbance Suite

We design a test suite that applies disturbances to segmentation masks at various intensity lev-
els as part of evaluating the robustness of the FRDS metric.

* Average smoothing: For k € {3,5,7,9}, perform average smoothing with kernel size k x k.
Use stride 1 and L%J padding to retain original dimensions. Then, re-discretise the values.
This is equivalent to performing a majority vote within each k x k window. This tests the
metric’s ability in penalising blurry generations.

* Black box crop: For cpin, tmax € {(0.1,0.3),(0.2,0.5),(0.3,0.7),(0.4,0.9) }, choose «,  each
within the range [cmin, Cmax]- Crop a 128a x 1284 black box randomly within the mask.
This tests the metric’s ability in penalising incomplete or invalid generations.

* Elastic deformation: For o €{8,6,4,2}, perform elastic deformation with @ =300 and
o, and nearest neighbour interpolation. This tests the metric’s sensitivity to unrealistic
shape contours.

* Pepper noise: For p € {0.0005,0.005,0.05,0.5}, each pixel has a p probability of being set
to black. This tests the metric’s ability to detect fine-grained inaccuracies.

Figure[C.1 presents the visual effects of the disturbances.

QOOOORO VO ¢

(a) Average smoothing (b) Black box crop

(c) Elastic deformation (d) Pepper noise

Figure C.1: Preview of the effects of disturbances on the same mask. Leftmost mask is the orig-
inal. Then, disturbance level increases from left to right. The effect of average smoothing is
empirically subtle unless zoomed in.
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Appendix D

Evaluation Metrics

D.1 Dice Coefficient

The Dice coefficient (Dice-Sorensen coefficient, Serensen-Dice index, Dice similarity coeffi-
cient), or DSC for short, is a measure of overlap between two sets of data X and Y. It is formu-
lated as:

_21XnY]

DSC=———
IX|+1Y]

In the context of Boolean data, DSC is equivalent to the F1 score: harmonic mean of precision
and recall. The score ranges from 0 to 1, where 0 indicates no overlap and 1 indicates perfect
overlap.

Similarly, DSC can be computed for 3D volumes[65]. Let A and B be binary segmentation
volumes with N voxels. The formulation becomes:

2YN A.B:
DSC=NZ’—lNl
Zi Ai+Z,- B;

The 2 formulations are identical. For multi-class segmentation, the DSC is computed for each
class and the average is taken.

D.2 Welch’s t-test

The Welch'’s t-test is a statistical test that approximates the solution to the Behrens-Fisher prob-
lem. In short, it adapts the Student’s ¢-test but does not assume equal variance between two
populations.

Let Xi,..., X, and Y3,..., Y, be independent and identically distributed samples from two
populations that are normally distributed with unknown means px, 4y and unknown variances
0%,0%. Furthermore, 05 and 0% are not necessarily equal. The Behrens-Fisher problem is to
test the null hypothesis Hy: ux = py.
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APPENDIX D. EVALUATION METRICS D.2. WELCH'’S T-TEST

Welch’s t-test formulates the test statistic ¢ as:
X-Y
[2 | 2
$L+ Sy
Sy

h =X =—
whnere Sy Sy
X » Y
\/ﬁ

vm

Here, X and Y are the sample means, sz and sy are the standard errors, and sy and sy are the
sample standard deviations.

=

The Welch-Satterthwaite equation is used to approximate the degrees of freedom v. Assum-
ing n=m:

(n—1) (si + si_/)2

4 4
-+ S-
SX SY

VvV =

Then, the t-statistic with v is used to test the null hypothesis with the Student’s t-distribution. A
p-value of p < a indicates that there is an a chance that X1, ..., X, and Y3, ..., Y;, are observed if
H, is true. As example, p < 0.05 is often used to reject the null hypothesis with 95% confidence.
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Appendix E

Additional Visualisations

E.1 DataPreview

Presenting more previews of preprocessed data from the ACDC and M&Ms datasets. The GT
mask (overlayed with opacity) segments the slice into the LV (yellow), RV (blue), MYO (green).

Figure E.2: M&Ms dataset, Centre 1.
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APPENDIX E. ADDITIONAL VISUALISATIONS E.1. DATA PREVIEW
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Figure E.5: M&Ms dataset, Centre 4.
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E.2. SYNTHETIC MASKS APPENDIX E. ADDITIONAL VISUALISATIONS

Figure E.6: M&Ms dataset, Centre 5.

E.2 Synthetic Masks

Presenting more previews of generated masks from the best NVAE models.
2@ @
e » - @0
DO O 00 «® 0O

Figure E.7: Default-N
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APPENDIX E. ADDITIONAL VISUALISATIONS E.2. SYNTHETIC MASKS

Figure E.8: Default-N with clamping and SR

Figure E.9: LatentSkip-N
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