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Abstract

Computer-aided diagnosis (CADx) plays a crucial role in assisting radiologists with interpreting
medical images. Over recent years, there has been significant advancements in image classifi-
cation models, such as deep neural networks and Vision Transformers. Training such models
require lots of labelled data, a prerequisite often not met in medical environments as labelling
images is time-consuming and requires expertise.

An alternative training paradigm is self-supervised learning, which involves pretraining a
model with unlabelled data followed by finetuning it with labelled data. This paradigm has
achieved strong performance on classifying natural images, even with limited labelled data.

This thesis aims to explore the potential of SimCLR, a state-of-the-art self-supervised learn-
ing framework, for medical image classification. We evaluate this framework on a wide range of
medical imaging modalities, including colon pathology, dermatology, blood cells, retina fundus
and other medical scans. We find significant improvement over baseline supervised metrics (an
increase of up to 30.6% in accuracy). We simulate different data settings and explore tackling
class imbalance, as well as transfer learning on different datasets. We find downsampling im-
ages to be a viable solution for some modalities in bringing down training times (12 hours to
pretrain a model for classifying blood cells that achieves over 0.95 AUC after finetuning). We
propose a novel augmentation sequence which shows consistent improvement over the original
framework.
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Chapter 1

Introduction

Machine learning and computer vision plays a significant role in computer-aided diagno-
sis (CADx) to assist radiologists with interpreting medical images[7, 8] and early detection
of lesions[9]. Using supervised learning methods for image classification and segmentation
tasks poses major challenges, as performance is hindered by scarcity of labelled data[10, 11].
Unfortunately, this is a common issue as annotating medical images are time-consuming and
requires expertise.

Over recent years, there has been significant advancements in self-supervised learning (SSL)
(Figure 1.1), a machine learning paradigm involving pretraining a model with unlabelled data
followed by finetuning with labelled data. In particular, a subcategory of SSL is contrastive
learning, which involves applying data augmentations to an image, then comparing similarities
between the augmented images. These methods have demonstrated the capabilty of classifying
natural images with high accuracy[4, 12, 13], even with a limited amount of labelled training
data. Research[14, 15, 16] has revealed promising prospects for self-supervised learning for

Figure 1.1: Progression of top-1 accuracy of self-supervised methods for image classification on
ImageNet. As of June 2023, DINO[1] leads at 86.7% accuarcy, using Vision Transformers (ViT).
ReLIC[2, 3] and SimCLR[4, 5] leads for ResNet models.[6]
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medical imaging given an abundance of unlabelled data and a small amount of labelled data.
However, features of medical images prove to be a difficult challenge. Adaptations to existing
methods have been proposed[17, 18] to account for features such as greyscale colour space and
low contrast.

In this thesis, we present a comprehensive evaluation on applying a state-of-the-art con-
trastive learning framework called SimCLR[4, 5] to medical image classification. We work
towards determining the extent to which SimCLR is feasible given different environments
(modalities, available data), as well as the extent to which it is necessary. We propose a novel
augmentation sequence which improves classification performance in many modalities, as
well as novel adaptations to apply SimCLR to a setting with a lack of unlabelled and labelled
data. We hope our work contributes to a better understanding of the capabilities of SimCLR and
contrastive learning for medical imaging tasks.

1.1 Objectives and Contributions

In this thesis, our overarching objective is to determine the potential of SimCLR for medical im-
age classification. We break this into smaller objectives below and summarise our contributions
for each objective.

• Determine the extent to which the existing SimCLR framework transfers to medical
image classification.

The original papers[4, 5] present SimCLR for image classification and evaluate the frame-
work using natural images from ImageNet. We adopt their specifications and build a
complete SimCLR framework in Python and PyTorch Lightning. We also build a collection
of evaluation tools such as top-1 accuracy and AUC ROC metrics, PCA and t-SNE.

Our results reveal that SimCLR pretraining improves over baseline supervised metrics by
up to 30.6% accuracy for colon pathology and 15.3% accuracy for blood cells.

• Devise improved settings for applying SimCLR to different medical imaging modalities.

We consider different augmentations sequences, including dropping random horizontal
flip and random greyscale. We propose a novel augmentation sequence for medical images
involving random histogram equalisation and random sharpness, as well as removing
colour distortion for greyscale medical scans. We observe up to 2.9% increase in accuracy
over the original sequence. We also observe pretraining with our proposed sequence is
effective for greyscale images, improving over baseline supervised metrics by up to 28.5%
accuracy for retinal OCT and 8.3% accuracy for tissue cells.

Previous works[14, 17] indicated long training times as a limitation, especially with some
modalities consisting of very large images. We use medical images from MedMNIST[19,
20], which downsamples source images to 28×28. We find SimCLR to be effective on
these downsampled images.

• In terms of availability of medical images, determine the extent to which SimCLR
pretraining is necessary and/or feasible.

We simulate environments with 100, 250, 1000 labelled data and consider different ap-
proaches to finetuning. We observe that freezing the backbone (fixing the parameters
of the CNN after pretraining) yields best results given a small amount of labelled data.
We also perform experiments with large amounts of labelled data and conclude that
pretraining can still improve over supervised learning by up to 2.8% accuracy.
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We evaluate whether SimCLR pretraining is feasible given a lack of data by using a retina
fundus dataset of 1,080 unlabelled and labelled images. We propose a workflow involving
initial pretraining on a different, larger dataset before finetuning with the specialised retina
fundus dataset. This workflow achieves up to 3.2% increase in accuracy over baseline
metrics. The baselise metrics involve supervised learning, as well as pretraining with
retina fundus images only.

Finally, we evaluate the feasibility of SimCLR on a heavily imbalanced dataset. We attempt
to balance the dataset by performing undersampling. We conclude that using the full
dataset yields better performance.

1.2 Challenges

The main challenges faced during this project were:

• Long training times

The original paper[4] states that SimCLR benefits from large batch sizes and long training
times. Pretraining a single model on a NVIDIA GPU cluster for CUDA-optimised AI
frameworks takes 12 hours, even when source images are downsampled to 28×28. This
introduces challenges on hyperparameter tuning and exploring different augmentations.
For the former, we instead adopt hyperparameters previously tuned on the STL-10 dataset.

• Diverse data modalities

A comprehensive evaluation of SimCLR on medical imaging involves performing experi-
ments on many data modalities. This is a shortcoming of many previous works[15, 16, 18,
14]. In this thesis, we train over 170 ResNet models in 6 different modalities and use cloud
computing (Bitbucket) to store them. We focus on 2D modalities only.

• Explainability of results

Neural networks are notorious for being black-box models. They often lack transparency
and interpretability. A significant hurdle lies in devising an augmentation sequence
that is effective for medical images. While possessing a good understanding of medical
features help, it remains difficult to ascertain the effectiveness of different augmentations
and previous works would verify their proposals with a grid search. Unfortunately, this
approach is infeasible for us due to limited time.

• Unbiasedness of results

This thesis entails comparative analysis between SimCLR and supervised baselines. We
train all models and collect all metrics internally to mitigate bias and external factors in
our evaluation.

1.3 Ethical Considerations

This thesis is research-focused and uses data from the MedMNIST[20, 19] database. Training
various models involves processing of previously collected personal data. All images are com-
pletely anonymised and personal information is unidentifiable. This research is exempt from
ethical approval as the analysis is based on secondary data which is publicly available, and no
permission is required to access the data.

SimCLR is open source and can be used and extended for research purposes[4].
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Models in this thesis are presented as means of research only. It is not applicable in industrial
practice. Contrastive and non-contrastive learning frameworks have a wide range of applications,
as they learn representations that can be used for a variety of downstream tasks[21]. Although
this thesis focuses on medical imaging, there remains a small potential for presented findings
to be misused in other industries, such as for military purposes. We do not warrant nor take
liability of any misuse of results associated with this thesis.

This thesis involves heavy computation to train and finetune hundreds of deep neural
networks, which consumes significant amounts of energy and may raise environmental concerns.
We make diligent efforts to reduce environmental impact by limiting model sizes and using
efficient, optimised systems for AI like CUDA frameworks and Slurm Workload Manager.
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Chapter 2

Background

2.1 Deep Neural Networks

A deep neural network (DNN) is a deep learning architecture comprised of a multi-layered
artificial neural network. Due to the number of parameters, training a DNN requires large
datasets and heavy computational power. Over recent years, the availability of cheap data
storage and computation has made training DNNs feasible, achieving high performance and
accuracy in fields such as automatic speech recognition[22], image recognition[23] and natural
language processing[24]. DNNs are powerful due to their scalability and ability to extract features
from data.

2.1.1 Multilayer Perceptron

An artificial neuron, or neuron for short, is a computational model devised from the behaviour
of a biological neuron. We provide its formal definition as follows.

Definition 2.1 (Artificial Neuron). An artificial neuron is a function f that linearly transforms
an input vector x, then applies an activation function φ, as described by (2.1) where w,b are
constants.

f (x) =φ
(
wT x +b

)
(2.1)

w and b are referred to as weights and bias respectively.

An example of a neuron is the perceptron, where φ is the threshold function. A perceptron
can learn any linearly separable function[25].

Perceptron(x) =
1 if wT x +b ≥ 0

0 otherwise
(2.2)

A layer is defined as multiple neurons connected in parallel. Each neuron transforms the
same input x, hence a layer is capable of learning multiple features of x. To learn non-linear
patterns, hidden layers are introduced between input and output layers, connecting outputs of
the previous layer to inputs of the next layer. This forms a network of neurons and is defined as
an artificial neural network1, or neural network (NN) for short. A deep neural network (DNN) is
an NN with many hidden layers.

1Finetuning parameters in a multilayered NN involves backpropagation. This requires φ to be differentiable,
unlike the perceptron. Commonly used activation functions in MLPs are ReLU and sigmoid.
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A multilayer perceptron (MLP) is a fully-connected (FC) deep neural network. We provide a
mathematical definition as follows.

Definition 2.2 (Multilayer perceptron). A multilayer perceptron with L hidden layers is defined
as:

h(0) := x (2.3)

h(k) =φk

((
w (k−1)

)T
h(k−1) +b(k−1)

)
k = 1, . . . ,L (2.4)

ŷ =φout

((
w (L)

)T
h(L) +b(L)

)
(2.5)

MLPs are capable of learning complex non-linear functions. However, their number of
parameters scale exponentially with dimension of feature space X ∋ x. This causes the model to
be susceptible to overfitting and not generalising well to unseen data. Furthermore, like all NNs,
training an MLP involves updating parameters w (k),b(k). Therefore, the amount of training data
required grows exponentially, a phenomenon known as the “curse of dimensionality, dimcurse”.
We explore how shortcomings of MLPs are addressed in Section 2.1.3.

2.1.2 Feature Learning

An important stage in deep learning is representing raw data as numerical vector inputs. This is
referred to as feature extraction. In the context of image classification, a w ×h bitmap image with
3 colour channels can be unambiguously described by a vector v ∈R3wh that can act as input to
train an MLP. However, such a representation is sensitive to absolute intensity: the same image
may look different during daytime and nighttime. The representation is not discriminative, and
information on neighbouring pixels is lost when a 2D image is flattened to a vector.

Up until 2012, feature extraction pipelines would be predominantly manually engineered by
researchers[26]. The workflow is shown in Figure 2.1.

Figure 2.1: Schematic process for applying feature extraction to raw data and feeding the
extracted representation into a machine learning classifier.

An example of a feature extraction algorithm is the scale-invariant feature transform[27]
(SIFT) for detecting and describing generalisable, local features in images. This descriptor is
robust to scaling, rotation and intensity. We give a brief overview of SIFT in Appendix A.

Recent advancements in computational speed have facilitated practical use of deep feed-
forward networks like residual neural networks (ResNet) as discussed in Section 2.1.3. Feature
extraction algorithms like SIFT are being dropped in favour of such networks which perform
automated feature learning in initial layers. This allows numerical data such as vector of pixel
intensities to be fed directly into the classifier model without a feature extraction algorithm as a
precursory step.

2.1.3 Convolutional Neural Networks

A convolutional neural network (CNN) is a deep learning architecture that tackles overfitting by
encoding certain properties such as local connectivity and weight sharing to reduce the number
of parameters in the network. This approach is effective for image classification tasks[28].
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Bitmap images are encoded as a 2D grid of pixels. The colour of each pixel is encoded as
three channels that store red, green and blue intensity. This third-order tensor must be reshaped
to a 1-dimensional vector to input into an MLP. However, flattening a matrix to a vector loses
information on some neighbouring pixels, a shortcoming pointed out in Section 2.1.2.

Dive into Deep Learning (Zhang and others)[26] offers an elegant analogy: consider the
puzzle game “Where’s Wally?” where readers are challenged to find Wally, donned in his bobble
hat, striped red shirt and round glasses. A critical observation is that Wally has this distinctive
appearance regardless of where he appears in the image. This observation generalises to image
classification tasks, for example, on detecting whether an image contains a certain object. This
is the intuition behind two principles of CNNs: translation invariance and local connectivity.

• Translation invariance - This refers to how the network responds similarly to the same
patch, regardless of its position in the input image. In CNNs, this is achieved through
the convolutional layers, which uses a fixed-size kernel to scan over the input image and
extract features.

Translation invariance is an important principle as it allows the model to generalise well to
unseen data. This is because it learns to recognise objects regardless of where they appear
in the image. That said, CNNs are not completely translation invariant, as the position of
objects are sometimes significant, e.g. eyes with respect to a face.

• Local connectivity - The locality principle states that a neuron in a given layer is influenced
only by a small number of neurons in the previous layer that are close to it. This is enforced
in the early layers of a CNN so the model can learn patterns that are local in nature.

Local connectivity substantially reduces the number of parameters in a CNN in comparison
to an MLP. In the early convolutional layers, each neuron f has a small receptive field. Let z
denote the output of the previous layer. The input x is the output of a small m ×m local region
in z. As the m ×m kernel shifts across z, the kernel weights remain the same. This is known as
weight sharing and further reduces the number of parameters.

The first instances of CNNs achieving state-of-the-art performance in image classification in-
clude AlexNet[29] (Figure 2.2) which won the ImageNet Large Scale Visual Recognition Challenge
(ILSVRC) in 2012. Advancements in CNNs reveal network depth is an important factor in perfor-
mance in non-trivial visual recognition tasks[30, 31]. However, very deep models suffer from
vanishing or exploding gradients[32, 33]. Some models address this by introducing intermediate
normalisation layers[34] and shortcut connections[35, 36, 31]. In the subsequent section, we

Figure 2.2: AlexNet comprises of convolution, max-pooling, local response normalisation and
FC layer[29, p. 11]
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discuss a state-of-the-art deep CNN model used in self-supervised learning algorithms: ResNet.

ResNet

The underlying principle of a residual neural network (ResNet) involves creating explicit ref-
erences to let layers fit a residual mapping[37]. The idea is that it is easier for the model to
optimise the residual mapping than a traditional unreferenced mapping. This is achieved
through building blocks, as presented in Figure 2.3. We provide a formal definition as follows.

Definition 2.3 (Building Block). A building block connects the start and end of a stack of convolu-
tional layers. Given input vector x, a building block is defined as:

y =F
(
x, {Wi }

)+x (2.6)

F
(
x, {Wi }

)
is the residual mapping learned by the stack of layers.

(2.6) assumes input and output dimensions are equal. If not, we can either match the dimen-
sions by performing a linear projection Ws or add zero entries padding.

y =F
(
x, {Wi }

)+Ws x (2.7)

Figure 2.3: A building block serves as a shortcut connection in residual learning[37, p. 2].

Given a plain deep feedforward CNN model, a residual neural network is the same network
with added building blocks to every few stacked layers. The building blocks serve as short-
cut connections. These connections perform the identity mapping which does not increase
parameter count nor computational complexity.

ResNet achieved state-of-the-art performance on ImageNet and won 1st place on the ILSVRC
2015 classification task. As a proof of concept, the original paper[37] explored a 1202-layer
ResNet which trained with no optimisation difficulty and achieved good performance.

2.2 Self-Supervised Learning

Deep neural networks are developed as a scalable architecture that automates the labour-
intensive process of manually engineering the feature extraction pipeline. Self-supervised
learning is a paradigm motivated by an insufficient amount of labelled data.

Supervised learning problems involve training a model to learn a mapping between input
and output space. Traditionally, this requires labelled examples: each data point is associated
with a label, and the output space is the set of possible labels. Conversely, unsupervised learning
aims to detect patterns within unlabelled data, such as clustering and dimensionality reduction.

A problematic scenario is when we want to tackle supervised learning problems like image
classification with a lack of labelled examples and an abundance of unlabelled examaples. This
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arises often in practice. For example, we can collect unlabelled data easily by filming a car
journey, but lack of labels make this data infeasible to be used to train a semantic segmentation
model for autonomous driving. One solution is to label data manually, but this is inefficient,
prone to human error and not scalable.

Over recent years, there has been development and success in self-supervised learning:
a machine learning paradigm that uses unlabelled data to learn useful representations for
downstream tasks. Self-supervised learning frameworks such as SimCLR, MoCo and BYOL
have outperformed their supervised learning counterparts[4, 12, 13] in downstream transfer
learning (see Section 2.2.1). Recent success and development in self-supervised models include
Bidirectional Encoder Representations from Transformers (BERT) NLP model used in Google’s
search engine[38] and OpenAI’s Generative Pre-trained Transformer 3 (GPT-3) autoregressive
model for completing text prompts and answering questions[39].

2.2.1 Pretraining and Transfer Learning

Pretraining is the process of performing initial training a machine learning model on one dataset.
Downstream transfer learning involves taking this model and further training or finetuning
it with a modified environment, for example, a different dataset or loss function. With initial
pretraining, the model may learn generalisable features that can be useful for the specific
downstream task. An example application is taking the pretrained GPT-3 model and finetuning
it to specifically improve performance on sentiment analysis.

In Section 2.2, we mention lack of labelled examples as a common problem in supervised
learning, but we may have an abundance of unlabelled examples. A workflow is to perform self-
supervised learning using unlabelled data, then finetune the resulting model with supervised
learning using the small amount of labelled data.

2.2.2 Data Augmentation

Self-supervised learning involves training a model to extract features. Ideally, the learned
features are generalisable so the model is applicable to unseen data. As discussed in Section
2.1.3, invariance and locality are important principles in feature learning. The idea is to enforce
models to learn generalisable features by applying label-preserving modifications to an image,
which produces images that are similar but not identical to each other. These modifications

Figure 2.4: Popular data augmentations applied to self-supervised learning methods.[4, p. 4]
(Original image cc-by: Von.grzanka)
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are known as data augmentations. The models are trained to learn similarities between the
augmented images. Figure 2.4 presents a non-exhaustive list of data augmentations that can be
applied in self-supervised learning methods. In Section 2.2.4, we analyse augmentations applied
to SimCLR, a self-supervised contrastive learning framework.

Data augmentation is not novel to self-supervised learning. In traditional machine learning
techniques, it is used to artificially increase the size of a dataset. This is used extensively in
training convolutional neural networks[40].

2.2.3 Contrastive Learning

Self-supervised models can be described as generative or representative[41]. Generative models
like GPT-3 aim to produce diverse, realistic outputs, while representation learning like BERT aim
to learn useful features for downstream tasks (see Section 2.2.1). We focus on two state-of-the-art
representation learning techniques: contrastive and non-contrastive learning.

Contrastive learning stems from the idea that pairs of examples sharing similar features
(positive examples) are close to each other in the embedded space, while dissimilar pairs
(negative examples) are further apart. This idea is prevalent in NLP and computer vision[42].
Examples of contrastive learning methods include SimCLR and Moco, both of which provide
competitive results on image classification[12, 4] (see Figure 2.5).

One of the challenges of contrastive learning is preventing dimension collapse. This is the
phenomenon where embedded vectors in the learning representation spans a lower-dimensional
subspace of the entire embedding space. This also describes the case where all embedded vec-
tors collapse to a single point, referred to as a “complete collapse”. Most contrastive learning
methods have used techniques like momentum encoders[12] and large batch sizes[4] to prevent
collapse, but in turn makes the training process very computationally intensive.

Figure 2.5: ImageNet top-1 accuracy of linear classifiers with self-supervised pretraining on
ImageNet, against supervised ResNet-50 (grey cross). SimCLR achieves 76.5% accuracy while
SimCLRv2 (not shown in figure) achieves 79.8% accuracy[5]. As of May 2023, SimCLRv2 has
the runner up top-1 accuracy for self-supervised image classification on ImageNet with ResNet
encoder, topped only by ReLICv2 with 80.6% accuracy[3]. [4, p. 1]

13



In Section 2.2.5, we discuss non-contrastive learning as an alternative to contrastive learning,
which does not rely on explicit positive-negative pairs.

2.2.4 SimCLR

SimCLR is a contrastive learning method that aims to learn useful representations of images
by comparing augmented data via a convolutional neural network[4]. The CNN is trained to
recognise similarities between data points that are transformed versions of the same input
image, as well as dissimilarities between data points derived from different input images. Using
this contrastive method, the network can learn to extract useful representations that can be
used in downstream tasks, as discussed in Section 2.2.1. SimCLR has reached state-of-the-art
performance in image classification, as presented in Figure 2.5.

Overview of Architecture

Figure 2.6 visualises the architecture of SimCLR. We begin by applying a fixed augmentation
sequence twice to produce a pair of augmented images. The transformed images are different,
as the augmentations involves randomness. The fixed sequence is a very important hyperparam-
eter and it is discussed in Section 2.2.4. The resulting images are each fed into a base encoder
(convolutional neural network) which outputs a feature vector (learned representation). This is
then fed into a small MLP (i.e. the projection head) that outputs a reduced embedded vector.
The CNN is trained to minimise the distance of the embedded vectors of the positive pair while
maximising the distance of the vectors of negative pairs.

Figure 2.6: A friendly illustration of SimCLR architecture comprised of a base encoder, projection
head and effect of image augmentations[43].
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Figure 2.7: A simple framework for contrastive learning of visual representations. Two data
augmentation operators are sampled from the same augmentation sequence t ∼ T and t ′ ∼ T
and applied to initial image x. The base encoder f (·) is trained to maximise agreement using
contrastive loss alongside a projection head g (·).[4, p. 2]

SimCLRv2[5] adopts the same architecture and explores deeper and wider base encoders and
a slightly larger projection head. SimCLRv2 also applies semi-supervised learning by performing
distillation2 with unlabelled examples after supervised downstream learning.

Figure 2.7 encapsulates the architecture as follows. We adopt the same notation in this paper.

x := original image (2.8)

τ := fixed augmentation sequence (2.9)

x̃i := result of applying t ∈ τ to x (2.10)

x̃ j := result of applying t ′ ∈ τ to x (2.11)

f (·) := base encoder (2.12)

hk := f (x̃k ) ∀k ∈ { i , j } i.e. feature vector of augmented images (2.13)

g (·) := projection head (2.14)

zk := g (x̃k ) ∀k ∈ { i , j } i.e. embedded vector to apply contrastive loss (2.15)

Data Augmentation

In Section 2.2.2, we discuss the role of data augmentation in self-supervised learning and
present a list of techniques in Figure 2.4. The choice of augmentations is a very important
hyperparameter for SimCLR as it directly affects the representation space and what patterns the
model learns.

The original paper[4] presents SimCLR with the following fixed sequence: crop and resize,
colour distortion then Gaussian blur. The same sequence is adopted for SimCLRv2[5]. This
sequence is applied on x twice to produce x̃i and x̃ j . It achieves strong performance, and the
use of crop and resize in combination with colour distortion is crucial. We provide formal
definitions3 of these augmentations in Section 3.2.1. We give a short discussion below.

2Distillation is a technique to compress the knowledge in multiple trained models to a single model[44].
3The numbers have been slightly modified from the original paper to obtain better performance and stability for

medical images.
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Figure 2.8: Possible results of performing crop and resize twice on the same image. One case is
where A is a local view of B . The other case is where C and D are neighbouring views[4, p. 3].

Crop and resize takes a subset of the original image, then expanding it to its original size.
This results in 2 scenarios as presented in Figure 2.8:

1. WLOG assume x̃i ≥ x̃ j in size. x̃ j is a local view of x̃ j . This forces the model to learn scale
invariance to recognise other similarities between x̃i and x̃ j .

2. x̃i , x̃ j are neighbouring views. This is more challenging to learn, but if no other augmenta-
tions are performed, the model can exploit the similarity of colour space between x̃i and
x̃ j [5].

Crop and resize is followed by colour distortion and Gaussian blur to prevent the model
from exploiting colour space and learn more generalisable features. Examples of augmented
images are shown in Figure 2.9.

Figure 2.9: Examples of augmented images from the STL-10 dataset[45], applying random crop
and resize, colour distortion and Gaussian blur.
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Base Encoder: Convolutional Neural Network

The base encoder network f (·) consists of convolutional layers and acts as a feature extractor.
SimCLR uses ResNet-50[4] while SimCLRv2 explores larger models like ResNet-128 and ResNet-
152[5]. An overview of ResNet can be found in Section 2.1.3.

Projection Head: Multilayer Perceptron

The projection head g (·) is a nonlinear transformation that maps representations hi ,h j to an
embedded space where we compare their similarities. The original paper for SimCLR proposes
a two-layer MLP with ReLU activation in the hidden layer, while SimCLRv2 extends g to three
layers.

We provide some preliminary definitions before moving onto how SimCLR optimises param-
eter values through use of the projection head.

Definition 2.4 (Cosine Similarity). sim(·, ·) denotes the cosine similarity between two vectors.

sim
(
zi , z j

)
= zT

i z j∥∥∥zi

∥∥∥∥∥∥z j

∥∥∥ (2.16)

The InfoNCE loss[46] is based on NCE (Noise-Contrastive Estimation). It is proposed as a
loss function for representation learning frameworks. We provide a formal definition as follows.

Definition 2.5 (InfoNCE). Given a set Z = { z1, . . . , z2N } of 2N samples or N pairs of samples, with
one positive pair and N −1 negative pairs, we optimise (2.17), where τ is a temperature scalar
hyperparameter.

li , j =− log
exp

(
sim

(
zi , z j /τ

))
∑2N

k=11[k ̸=1] exp
(
sim

(
zi , zk /τ

)) (2.17)

SimCLR applies the InfoNCE loss with batch size N , which compares the similarities of the
augmented pair of images represented as vectors zi , z j and contrasts them with representations
of other augmented images in the same batch by performing softmax.

The original paper proposes dropping g during downstream transfer learning as the repre-
sentations z tend to perform worse than h. SimCLRv2 uses a larger g and experiments suggest
part of g can be preserved for downstream learning.

Limitations

SimCLR requires a large batch size (256 to 8192, sizes far exceeding commercial GPUs[4]) to
guarantee enough negative pairs during batch training. As consequence, pretraining takes a
very long time. Google uses Tensor Processing Units (TPUs) to train a ResNet-50 SimCLR model
with batch size of 4096[4].

Alternatively, representations h from different batches can be merged together during train-
ing in an attempt to reduce batch size. However, f gets updated every minibatch, so some
representations become outdated and suboptimal. This phenomenon is known as inconsistent
representation generation. MoCo combats this problem by introducing a memory network,
which we discuss in Section 2.2.5. Note that SimCLRv2 adopted this memory mechanism which
yielded a 1% improvement in accuracy.
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Figure 2.10: MoCo uses a momentum encoder to combat inconsistent representation generation.
We compare this with two existing mechanisms. (a): end-to-end update by backpropagation
requires a large batch size to be effective. (b): memory bank[47] consists of representations of
all image samples in the dataset and no backpropagation is needed. A momentum update is
used to maintain some consistency. (c): momentum contrast is memory efficient and capable of
supporting billion-scale data[12, p. 3]

2.2.5 Various Works

MoCo: High Performance with Small Batch Size

Momentum Contrast[12, 48] (MoCo) is a contrastive learning method that produces competitive
results without the need for large machines during training4. Like SimCLR, MoCo uses a ResNet
query encoder denoted as fq . It also uses a momentum encoder (a.k.a. key encoder, fk ) that is
updated via linear interpolation of the two encoders, as defined in (2.18). This allows generated
tokens (representations) from fk to be consistent across multiple batches, making a small batch
size feasible.

θk ← mθk + (1−m)θq (2.18)

where θk are parameters for fk , θq are parameters for fq .

Figure 2.10 presents the architecture of MoCo.

MoCo uses batch normalisation as in standard ResNet. As consequence, a common scenario
is when the parameters of fk are similar to fq , since they are fed the same input data, which
can potentially cause the intra-batch communication to leak information[12]. To combat this,
MoCo shuffles the sample order in each mini-batch for fk before distribution among GPUs and
after encoding. The sample order for fq is not shuffled.

The projection head of MoCo involves using InfoNCE loss (2.17) with cosine similarity (2.16).
MoCo v2[48] involves using stronger augmenetations during pretraining and adopts the 2-layer
MLP setup from SimCLR.

MoCo has a lower accuracy than SimCLR on the ImageNet top-1 accuracy benchmark (71.1%
accuracy[48] using ResNet-50 query encoder compared to SimCLR’s 76.5%) but offers a high-
performing alternative to organisations that lack the necessary hardware to train a SimCLR
model.

4Due to small batch size, MoCo v2 baselines for ImageNet can run on an 8-GPU machine[48].
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Non-Contrastive Learning: BYOL

In Section 2.2.3, we discuss contrastive learning methods which compares positive and negative
examples. Negative pairs introduce inconsistency problems, which can be resolved with large
batch sizes, a memory bank or momentum encoder. The other state-of-the-art self-supervised
representation learning method is non-contrastive learning, which uses positive examples only.

Bootstrap your own latent (BYOL)[13] is a non-contrastive method that uses two neural
networks that interact with each other to predict images with different augmentations applied.

Figure 2.11 visualies the architecture of BYOL. We refer to the two networks as “online” and
“target” network.

Figure 2.11: BYOL consists of an online and target network, each of which comprises of an
encoder f and a projector g . The online network also consists of a predictor q .[13, p. 4]

The online network has weights θ and consists of an encoder fθ, a projector gθ and a
predictor qθ. The target network has the same architecture with the exception of a predictor,
and has weights ξ, defined as an exponential moving average of θ as defined by (2.19).

ξ← τξ+ (1−τ)θ (2.19)

where τ ∈ [0,1] is the decay rate.

BYOL produces a pair of augmented views v, v ′ from an image. v is fed into the online
encoder fθ which outputs a representation yθ, then fed into gθ to output zθ. zθ is fed into
qθ. The same process is applied to v ′ in the target network. The online predictions and target
projections are normalised as follows:

qθ(zθ) = qθ(zθ)∥∥∥qθ(zθ)
∥∥∥

2

(2.20)

z ′
ξ =

z ′
ξ∥∥∥z ′
ξ

∥∥∥
2

(2.21)

BYOL uses a mean-squared error loss as defined by (2.22). Furthermore, v ′ and v are
separately fed to the online and target network respectively to compute L̃θ,ξ.

Lθ,ξ =
∥∥∥qθ(zθ)− z ′

ξ

∥∥∥
2

(2.22)

L BYOL
θ,ξ =Lθ,ξ+L̃θ,ξ (2.23)

The parameters θ are updated as defined by (2.24).

θ← optimiser(θ,▽θL
BYOL
θ,ξ ,ν) (2.24)
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Figure 2.12: Performance of BYOL on ImageNet top-1 accuracy using ResNet-50 and ResNet-200
(2×).

where ν describes the learning rate.

Only fθ is kept in downstream transfer learning. Figure 2.12 compares the performance
of BYOL on ImageNet top-1 accuracy against state-of-the-art methods. BYOL achieves 79.6%
accuracy, slightly lower than SimCLRv2’s 79.8% (not marked on figure).

Non-contrastive learning has been criticised for having an abundance of non-collapsed
global optima in the loss objective that may not learn the correct ground truth features[42].

2.3 Self-Supervised Learning in Medical Imaging

Section 2.2, describes concepts and techniques in self-supervised learning. Similar principles
are applied for medical image classification, with existing techniques tuned to accommodate
for characteristics such as low contrast and noise, greyscale colour space and large dimensions.
Images are analysed for diagnostic and therapeutic purposes. The objective is to train models
capable of being deployed in computer-aided diagnosis[9, 7, 8, 49, 50] (CADx) to support doctors
in interpreting medical images and early detection of malignant lesions. We discuss various
works that extend self-supervised frameworks to tackle such challenges.

2.3.1 Various Works

In 2019, Chen et al.[15] proposed an approach for medical imaging classification based on
context restoration, where pairs of randomly chosen image patches are swapped within an
image. This preserves intensity distribution but changes spatial information. A CNN is trained
to restore the original image and learns useful representations. This method achieves good
performance under lack of data (285 labelled images for brain tumour segmentation[15, p. 9])
compared to existing pretraining methods. However, evaluation is performed on limited data
modality. Namely, performance of classification tasks is evaluated on fetal 2D ultrasound only,
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localisation on abdominal CT and segmentation on brain MR images. Furthermore, the paper
did not verify whether these tasks outperformed their supervised learning counterpart.

In 2019, Zhou et al.[16] proposed an approach for 3D medical imaging tasks using an encoder-
decoder architecture and applying augmentations such as non-linear intensity transformation
and local pixel shuffling. The models aim to learn rich representations with limited annotated
data. This method achieves strong empirical results, surpassing performance of models trained
from scratch. The paper focuses on chest CT. Future work involves evaluating this method for
other data modalities. The paper adapts this approach to 2D versions, and is evaluated to offer
performance similar to supervised pretrained models on ImageNet. Further work is required to
determine the feasibility of applying this method to 2D medical images.

In 2021, Azizi et al.[18] proposed an approach using SimCLR and Multi-Instance Contrastive
Learning (MICLe) where initial pretraining uses unlabelled natural images before using unla-
belled medical images. However, evaluation only consists of two medical imaging categories
(dermatology and chest scans) and evaluation under out-of-distribution (OOD) data is not
considered.

2.3.2 Big-Data Training

In 2022, Ghesu et al.[14] proposed a methodology for self-supervised learning on large medical
imaging datasets (over 105,000,000 multi-modality images consisting of X-ray, CT, MR, US) based
on contrastive learning and online feature clustering[51].

A schematic overview is presented in Figure 2.13. The framework adopts existing contrastive
learning techniques like applying augmentations and using ResNet[14, p. 6] as a learning
model. The optimisation criterion is formed by swapping projected representations based on
cross-entropy loss, as defined by (2.25).

Figure 2.13: Architecture consists of augmentation operators, learning model fθ which out-
puts features z1, z2. The features are mapped to their cluster assignments q1, q2 and used for
optimisation.[14, p. 3]

L (z1, z2) =−∑
i

q (i )
2 log

exp 1
τ zT

1 ci∑
j exp 1

τ zT
1 c j

−−∑
i

q (i )
1 log

exp 1
τ zT

2 ci∑
j exp 1

τ zT
2 c j

(2.25)

where τ is the temperature parameter and {c1, . . . ,cK } is the set of cluster prototype vectors that
each pair (z1, z2) can be assigned to, for some hyperparameter K .

The paper offers two online clustering algorithms based on whether the training dataset
consists of images from the same medical imaging category (i.e. single-modality) or multiple

21



categories (i.e. multi-modality). The goal is to estimate the visual representations learned
by fθ via assigning the projected vectors q to cluster codes. Similar clustering strategies are
developed for unsupervised representation learning, for example, DeepCluster[52] uses k-means
as optimisation criteria, which is further developed to scale effectively to large datasets[53, 54].

Data Augmentation

The following augmentation strategies are used: image rescaling, energy-based augmentation,
linear and non-linear intensity rescaling, cropping. This has a similar intuition to the chosen
augmentations for SimCLR as discussed in Section 2.2.4, with energy-based augmentation and
intensity rescaling over colour distortion due to the prevalence of greyscale images in many
medical imaging categories.

Energy-based augmentation is based on the image normalisation algorithm[55] developed
for chest radiography. An image I is divided into energy bands I (1), . . . , I (B) with Gaussian filtering.
The normalised image with respect to the image cropΩ is calculated as:

Î (Ω) =
B∑

i=1

ei (I ,Ω)

ei (I ,Ω)
I (i ) (2.26)

where ei (I ,Ω) is the arithmetic mean of the energy levels of a set of predefined reference images
with respect to band I (i ).

Performance Results

The proposed methodology yields results exceeding supervised learning and SimCLR in AUC
performance (see Table 2.1) for lesion detection in chest radiographs. However, there is limited
amount of experiments performed due to long training times (up to 14 days). Additional
optimisation is necessary to make this method more efficient and scalable, which will enable
further investigations to be carried out, for example, on different modalities.

AUC Performance (LIDC-staged)
100% 50% 25% 10%

No pretraining 0.77 0.73 0.65 0.53
SimCLR 0.90 0.88 0.82 0.79
New methodology 0.94 0.91 0.85 0.85

Table 2.1: AUC performance for lesion detection using data from Lung Image Database Consor-
tium (LIDC). Comparison of results with SimCLR using 100%, 50%, 25%, 10% of training data.
[14, p. 8]

2.3.3 REMEDIS

In 2022, Azizi et al. proposed REMEDIS[17]: a unified representation learning framework for
medical imaging. REMEDIS uses SimCLR (Section 2.2.4) for feature learning and builds on
previous work[18], using pretraining on unlabelled natural images before using unlabelled
medical image data. REMEDIS achieves strong relative improvement in multiple medical
imaging categories (see Table 2.2). The team suggests that other contrastive models for feature
learning may achieve similar performance results.

Data Augmentation

REMEDIS uses standard SimCLR augmentations, namely random cropping, colour distortion,
rotation and random Gaussian blur.
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Task Metric Abs. Improvement % Improvement

Dermatology Top-3 Accuracy 0.026 2.9
Chest X-Ray AUC 0.015 1.7
PSP AUC 0.014 1.8
DME AUC 0.098 11.5
PMD AUC 0.034 4.7
Mammo. Classification AUC 0.018 2.1

Table 2.2: In-distribution improvement between REMEDIS and baseline: ImageNet-1K super-
vised pretrained ResNet. PSP is Pathology Survival Prediction, PMD is Pathology Metastases
Detection, DME is Diabetic Macular Edema.[17, p. 48]

Mammography and chest x-rays have greyscale colour space. For these images, REMEDIS
also uses elastic deformation (Figure 2.14) and histogram equalisation (Figure 2.15) to reduce
overfitting.

Conclusions

The paper demonstrates initial pretraining using non-medical images followed by additional
pretraining using medical images can lead to improvements in performance. State-of-the-art
contrastive learning methods like SimCLR can be used in the field of medical imaging, although

(a) Original (b) Deformed

Figure 2.14: Elastic deformation on a mammogram [56, p. 3]

(a) Original (b) New

Figure 2.15: Histogram equalisation enhances image contrast of Einstein [57, p. 9]
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a few modifications like data augmentation choices are necessary to accommodate for medical
imaging characteristics such as greyscale colour space.

The study uses retrospective data. Future research is needed to develop more compute-
efficient learning methods.
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Chapter 3

Standard SimCLR Setup

In this chapter, we adopt a SimCLR setup that performs well for classifying natural images[43]
and investigate the extent to which this setup can be transferred to medical imaging. We begin
by establishing some preliminaries, including data source, hyperparameter values and justifying
ResNet-18 as our base encoder choice. We then describe our setup written in Python with
PyTorch. We run this setup for colon pathology, dermatology and blood cells and consider two
downstream environments for transfer learning: freezing the backbone1 and not freezing the
backbone. We compare our findings to baseline results obtained from a supervised learning
context.

3.1 Preliminaries

3.1.1 Data Source

We source medical images from the MedMNIST database[20]. This database consists of lightweight,
standardised biomedical images downsampled to 28×28 and includes binary, multi-class and
multi-label classification tasks, as well as ordinal regression. We focus exclusively on 2D datasets.

The MedMNIST data points are labelled. We can create an environment that uses the
labels of a subset of the available data to simulate settings with a lack of labelled data and an
abundance of unlabelled data. Since we have availability of labelled data, we can also evaluate
the effectiveness of SimCLR pretraining with large amounts of labelled data, allowing us to
investigate the extent to which pretraining is necessary.

The class distribution of various datasets is presented in Appendix B.2.

3.1.2 Base Encoder Choice

We choose ResNet as our encoder for image classification. To choose an appropriate depth, we
perform supervised learning on various medical imaging modalities using depths supported by
torchvision. Namely, the supported models are ResNet-18, ResNet-34, ResNet-50, ResNet-101
and ResNet-152, but we consider the three smallest models only, as the MedMNIST database is
described as lightweight[20].

In Section 3.2.2, we explain that we will run experiments for colon pathology, dermatology
and blood cells. For each category, we run the supervised baseline setup (as described in Section
3.2.4) with ResNet-18, ResNet-34 and ResNet-50. We present the results in Figure 3.1. The

1The backbone in downstream tasks is the base encoder f in SimCLR pretraining.
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(a) Colon Pathology: Train (b) Colon Pathology: Validation

(c) Dermatology: Train (d) Dermatology: Validation

(e) Blood Cells: Train (f) Blood Cells: Validation

Figure 3.1: Comparison between top-1 accuracy of ResNet-18, ResNet-34 and ResNet-50 on
classifying medical images by performing supervised learning with 100% of available labelled
data from MedMNIST. For each category, validation accuracy between ResNet models interweave
with each other when train accuracy reaches 100%, suggesting that larger depths do not increase
performance. Note that lines are exponentially smoothed with α= 0.6 (see Appendix D) and the
true lines are semi-transparent.
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results suggest that increasing depth of model does not result in better performance. We choose
ResNet-18 as our base encoder.

3.1.3 Hyperparameter Tuning

SimCLR benefits from lots of pretraining with a large amount of unlabelled data[5]. It takes 12
hours to produce one pretrained model on a NVIDIA GPU cluster. We choose not to perform
hyperparameter tuning as a grid search with cross-validation is infeasible within the time
constraints of this project.

Instead, we adopt standard hyperparameter values for performing SimCLR in the context of
natural images[43]. Full details can be found in Table 3.1.

3.2 Setup

We build a complete SimCLR framework in Python using PyTorch Lightning, supporting initial
pretraining with unlabelled data and a downstream environment to finetune f 2.

Our initial approach involves adopting a standard setup for classifying natural images. We
slightly modify the setup described in the original paper[4] and evaluate the extent to which this
setup can be adopted for classifying medical images.

The framework consists of the following key classes:

• SimCLRLM - A PyTorch Lightning module for performing contrastive learning with Sim-
CLR.

• ContrastiveDownloader - Manages data pipelining from MedMNIST. During training,
applies augmentation sequence to a data point to generate a pair of augmented images.

• LogisticRegressionLM - A PyTorch Lightning module representing a logistic regression
model. This model is appended at the end of f when performing transfer learning with a
frozen backbone. Refer to Section 3.2.3.

• ResNetTransferLM - A PyTorch Lightning module representing a ResNet model. Used for
transfer learning with an unfrozen backbone. Refer to Section 3.2.3.

3.2.1 Data Augmentations

We adopt the augmentation sequence from a setup[43] that achieved high performance on the
STL-10[45] dataset of natural images. We refer to this sequence as τnat. τnat is slightly modified
from the sequence described in the original paper[4], namely, we apply less intense colour
distortion. These changes obtained better performance and stability when applied to a dataset
with low brightness variance[43], a trait found in medical images.

We describe τnat below. For each augmentation, let f define the augmentation application
and x be the input image. Let xi , j be the (i , j ) pixel of x.

1. Random horizontal flip - There is a 50% chance the image gets horizontally flipped.
Formally, let c ∈C ∼U (0,1) be random.

f (x) =
x ′ c < 0.5

x otherwise
(3.1)

where x ′
i , j = xw−i , j and w is width of x.

2Base encoder
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2. Random crop-and-resize - Take a rectangular subset of the image and expand it to the
original dimensions. Formally, let s ∈ S ∼U (0.08,1) be random. Let w,h be width and
height of x.

Choose random i ∈ w − sw and j ∈ h − sh. We start defining f as follows.

f (x0,0) = xi , j

f (xw,h) = xi+sw, j+sh

The rest of the points are defined via linear interpolation. The output image is concisely
expressed by (3.2).

f (xαw,βh) = xi+αsw, j+βsh α,β ∈ [0,1] (3.2)

3. Random colour distortion - Apply jitter to brightness, contrast, saturation and hue.
Formally, let c1,c2,c3 ∈C ∼U (0.5,1.5) and c4 ∈ D ∼U (−0.1,0.1) be random.

f (x) = h(s(c(b(x)))) (3.3)

where b(x) changes the brightness of x to c1x, c(x) changes the contrast of x to c2x, s(x)
changes the saturation of x to c3x and h(x) changes the hue of x by c4.

4. Random greyscale - There is a 20% chance the image becomes greyscale. Formally, let
xi , j have colour channel values ri , j , gi , j ,bi , j . Let h define a greyscale transformation.

h(r )i , j = h(g )i , j = h(b)i , j =
ri , j + gi , j +bi , j

3
(3.4)

Let c ∈C ∼U (0,1) be random.

f (x) =
h(x) c < 0.2

x otherwise
(3.5)

5. Gaussian blur - Blur the image using a Gaussian kernel. Formally, let σ ∈Σ∼U (0.1,2.0)
be random. The kernel size is 9×9.

f (x) = h ∗x (3.6)

h(i , j ) = 1

2πσ2 e−
i 2+ j 2

2σ2 (3.7)

Examples of τnat applied to medical images can be found in Figure 3.2.

3.2.2 Experiments

Medical Imaging Modalities

τnat involves colour distortion. Furthermore, SimCLR requires a setting with a large amount
of (unlabelled) data. Therefore, we will evaluate the standard SimCLR setup on the three
MedMNIST categories that have an abundance of multi-coloured images: colon pathology,
dermatology and blood cells.

Figure 3.2 presents samples of images from these categories (original and after augmenta-
tion).
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(a) Colon Pathology (b) Dermatology (c) Blood Cells

Figure 3.2: Comparison between original and augmented MedMNIST samples. For each cate-
gory, 6 original samples are shown on the left column. For each sample x, 5 augmented images
derived from x are shown on the right.

Downstream Transfer Learning

We consider two approaches to transfer learning. Both approaches involve taking f and discard-
ing g 3, then appending a linear layer to map representations h to output medical classes. Our
first approach to freeze f , so only the parameters of the linear layer are tuned. This preserves
feature representations learned during pretraining. The second approach is to not freeze f , so
parameters of f are also finetuned.

During pretraining, parameters of f are trained using unlabelled data only. Since labelled
data hold more information, logically we would want to utilise them to finetune encoder param-
eters. However, we argue that this setting may be sensitive with limited labelled images and the
finetuned parameters may not generalise well. Therefore, we will evaluate performance of both
approaches.

3.2.3 Architecture Overview and Implementation

The architecture consists of two stages. The first stage is to perform SimCLR pretraining on
the entire training dataset with τnat. This stage is presented in Figure 3.3. We adopt pre-tuned
hyperparameter values as described in Section 3.1.3. Details of our setup can be found in Table
3.1.

The second stage is to perform downstream transfer learning on f . As discussed in Section
3.2.2, we build two downstream environments: one with a frozen backbone and one with an
unfrozen backbone. Both environments are depicted in Figure 3.4.

3Projection head

Batch size 256
Dimension of latent space 128
Temperature 0.07
Learning rate 5×10−4

Optimiser AdamW, λ= 10−4

Scheduler Cosine annealing, ηmin = 10−5

Weight decay 10−4

Table 3.1: Hyperparameters and other details of our SimCLR environment. See Appendix C for
number of epochs.
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Figure 3.3: SimCLR pretraining pipeline. Given an image x, a pair of augmented images are
created through a predefined augmentation sequence τ. The two augmented images are passed
through a base encoder, then a projection head. We use ResNet-18 as the encoder. Fully
connected layers consist of FC 1000, ReLU and linear layer. Note that FC 1000 is the last layer of
ResNet-18.

(a) Setup with frozen backbone

(b) Setup with unfrozen backbone

Figure 3.4: Two downstream transfer learning environments. In both environments, the FC layer
is removed from ResNet-18 and the projection head is replaced with a linear layer that maps
representation h to predicted label ŷ .

Frozen backbone

We use a linear evaluation protocol where we attach a linear classifier to the end of the frozen
base network and train it.

Since the encoder parameters remain fixed during transfer learning, we design this down-
stream environment to take in h. We can get f by deep cloning the SimCLR network and
removing the projection head g . Then, the logistic regression model is simply a linear layer.

Details can be found in Table 3.2.

Unfrozen backbone

This downstream environment involves extracting f from SimCLR and redefining g as a linear
layer. Given non-augmented image x, the predicted label is g ( f (x)). g is attached at the end of
f and parameters of both g and f get finetuned during training.

Details can be found in Table 3.2.

Both downstream environments use cross-entropy as loss function, as defined in (3.8).

4Milestones: 0.6×max epochs, 0.8×max epochs
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Frozen backbone Unfrozen backbone

Batch size 64 128
Learning rate 0.001 0.001
Optimiser AdamW, λ= 10−4 Adam
Scheduler MultiStepLR4, γ= 0.1 None

Table 3.2: Hyperparameter and other details of both downstream environments.

H(p, q) =− ∑
y∈C

p(y) log q(y) (3.8)

where p is the true probability (one-hot encoded), q is our predicted probability and C is
the set of classes.

3.2.4 Baseline Environment

To measure increase in performance when using SimCLR pretraining, we design a baseline
environment that performs supervised learning on the available labelled data only. This setup
exactly matches the unfrozen backbone downstream environment described in Section 3.2.3,
except with f being a newly initialised ResNet model.

3.2.5 Results

A comprehensive evaluation can be found in Section 7.3. We provide a brief summary here.

Our findings reveal that the standard SimCLR setup for natural images can yield significant
improvement over baseline supervised learning when applied to medical imaging, in particular,
when there is a deficiency of labelled images. With 100 labelled images, SimCLR pretraining gains
30.6% increase in accuracy for colon pathology and 15.3% increase for blood cells classification.
A downstream environment with a frozen backbone outperforms the unfrozen backbone when
there is a very small amount of labelled images, but the frozen backbone has better performance
when there are more labelled images.

We observe models perform well for blood cells (up to 95.6% accuracy and 0.997 AUC) and
colon pathology (up to 0.974 AUC). We observe SimCLR pretraining yield significant improve-
ment despite the medical images being downsampled to 28×28.

With this setup, we have a less significant increase in performance for dermatology (2.2%
increase in accuracy with 250 labelled images and 2.9% increase with 1000 labelled images).
We propose the following explanations, which we explore in later sections: the augmentation
sequence is suboptimal for dermatology, there is a lack of data and there is a dataset imbalance
(see Table B.3).
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Chapter 4

Exploring Augmentation Sequences

The choice of data augmentations are important in contrastive learning as it directly affects the
features the encoder learns[4]. In this chapter, we investigate the impact of different augmenta-
tion sequences on model performance. We start by investigating the effect of random horizontal
flip and random greyscale. We then propose a novel augmentation sequence that uses random
histogram equalisation and random sharpness to enhance contrast of medical images. We run
these setups for colon pathology, dermatology and blood cells. We compare our findings to
results optained in Chapter 3.

4.1 Shorter Sequence

In Chapter 3, we investigate the extent to which a standard SimCLR setup for natural images can
be applied to medical images. We use the augmentation sequence τnat as described in Section
3.2.1.

In this section, we use exactly the same setup as described in Chapter 3 (refer to Section
3.2.3 for overview of architecture), except that we do not use random horizontal flip and random
greyscale. We argue that a greyscale filter causes information loss, while horizontal flip is not
necessary as it does not contribute to altering gradient magnitude, nor does it help the encoder to
learn local invariance. We refer to this shorter augmentation sequence as τshort. For downstream
tasks, we perform experiments with frozen backbone and unfrozen backbone. We compare
our findings to results obtained from our standard setup to investigate whether these extra
augmentations during pretraining improve classification performance.

4.1.1 Data Augmentations

Refer to Section 3.2.1, except τshort does not include random crop-and-resize and random
greyscale.

Figure 4.1 presents samples of images from pathology, dermatology and blood cells (original
and after augmentation).

4.1.2 Results

For full details and a more comprehensive evaluation, refer to Section 7.4.

We find that this setup yields similar performance levels to the standard setup for colon
pathology and dermatology, but yields lower accuracy for blood cells (2.6% decrease with 250
labelled images). We conclude the use of random horizontal flip and greyscale allows richer
representations for certain medical imaging modalities.
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(a) Colon Pathology (b) Dermatology (c) Blood Cells

Figure 4.1: Comparison between original and augmented MedMNIST samples. For each cate-
gory, 6 original samples are shown on the left column. For each sample x, 5 augmented images
derived from x are shown on the right.

4.2 Novel Sequence

Up until this point, we have considered setups devised from natural image classification. In
this section, we propose a novel sequence devised from considering traits prevalent in medical
imaging, in particular, by modifying τnat to enhance contrast in images.

We use the same setup as described in Chapter 3 (refer to Section 3.2.3 for overview of
architecture), except that we use our novel augmentation sequence, which we refer to as τnov.
We compare our findings to results obtained from our standard setup1.

4.2.1 Data Augmentations

τnov is adapted from τnat (the latter is described in Section 3.2.1). We start by applying random
horizontal flip, random crop-and-resize, random colour distortion, random greyscale and
Gaussian blur. Then, we further apply random histogram equalisation followed by random
sharpness.

Random colour distortion is applied with c1,c2,c3 ∈C ∼U (0.8,1.2) and c4 ∈ D ∼U (−0.04,0.04)
as defined by (3.3). We choose to lower the effect of colour distortion as histogram equalisation
also alters the gradient of colour space. The rest of the adopted augmentations are applied with
the same parameters.

We provide a brief intuition of our proposition before describing histogram equalisation
and sharpness in more depth. Compared to natural images, some medical imaging modalities
have low contrast and noise. Gaussian blur is kept to smooth out noise. Random horizontal flip
and random greyscale is kept as our investigation in Section 4.1 suggest that they may improve
performance during pretraining. Histogram equalisation is introduced to tackle low contrast. To
introduce variety, we considered two options.

1. Perform histogram equalisation on a random subset of the image.

2. Perform histogram equalisation with p chance.

We opted to perform histogram equalisation with 50% chance, since a previous augmenta-
tion involved cropping the original image. Nonetheless, the former option is worth investigating
in future works. To address the case where no equalisation is performed, we introduce sharpness
to increase brightness contrast.

1In the evaluation, we conclude that random horizontal flip and random greyscale are important augmentations,
so we favour τnat over τsimple.

33



Figure 4.2 presents samples of images from pathology, dermatology and blood cells (original
and after augmentation).

(a) Colon Pathology (b) Dermatology (c) Blood Cells

Figure 4.2: Comparison between original and augmented MedMNIST samples. For each cate-
gory, 6 original samples are shown on the left column. For each sample x, 5 augmented images
derived from x are shown on the right.

Histogram Equalisation

Histogram equalisation is an image processing method to enhance contrast. We start by con-
sidering greyscale images only. The intuition behind the method is to apply a transformation
to each pixel intensity so that the plot of the cumulative distribution function (CDF) forms a
straight line, indicating that pixel intensities are spread out. Figure 4.3 presents an example. We
provide formal definitions and formulations below.

(a) Original image (b) Original histogram

(c) Resulting image (d) Resulting histogram

Figure 4.3: Comparison to showcase the effect of applying histogram equalisation to greyscale
image [58]

Definition 4.1 (Histogram). The histogram of a greyscale digital image is a histogram formed
from the number of pixels with intensity φ for each φ ∈ [0,L−1].

We consider RGB images and their greyscale counterparts, so L = 256.

Definition 4.2 (Histogram Equalisation). Let g define equalisation application and x be the input
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greyscale image. Let xi , j be the intensity of the (i , j ) pixel of x. Let h be the normalised histogram
of x.

hφ =
∑

xi , j∈x 1
(
xi , j =φ

)
number of pixels in x

∀φ ∈ [0,L−1] (4.1)

Then, g is defined by (4.2).

g (xi , j ) = floor

(L−1)
xi , j∑
φ=0

hφ

 (4.2)

In practice, histogram equalisation is generally applied to low-contrast greyscale images to
increase contrast[59]. It is a non-linear process and applying it directly to an RGB image disrupts
the colour distribution. Therefore, given an RGB image, we first convert it to Y CbCr which
separates the colour space into a luma signal Y and chroma components Cb ,Cr . We perform
histogram equalisation on the intensity plane Y before converting the resulting image back to
RGB.

τnov involves a 50% chance of applying histogram equalisation. Formally, let f define the
augmentation application and g as defined in (4.2).

f (x) =
g (x) c < 0.5

x otherwise
(4.3)

Sharpness

Let x be the input image. Define a smoothing kernel as follows.

h = 1

13

1 1 1
1 5 1
1 1 1

 (4.4)

We can adjust the sharpness of x by applying the smoothing kernel and linear interpolating
between the original and smoothed image.

g (x) = (h ∗x)(1−α)+xα (4.5)

Note that ∗ is the convolution operator as defined in Appendix A.1. Since h ∗x is the smoothed
image, applying g with any α value larger than 1 results in a sharpened image.

τnov involves applying sharpness with α randomly chosen between 1 and 10 uniformly.

4.2.2 Results

For full details and a more comprehensive evaluation, refer to Section 7.5.

Our findings reveal that applying SimCLR with our novel augmentation sequence τnov result
in small, consistent improvement in classification accuracy over using the original sequence
τnat. In particular, it performs well for colon pathology when there is a small amount of labelled
images: 2.9% increase in accuracy with 100 labelled images and 2.8% increase with 250 labelled
images.

35



Chapter 5

Adapting to Lack of Data

In this chapter, we investigate the effectiveness of SimCLR pretraining and transfer learning on a
small dataset that lacks both labelled and unlabelled data. We start by investigating the retina
fundus dataset and attempt to transfer pretrained colon pathology features to retina fundus
models. We then address dataset imbalance in dermatology by performing undersampling. We
compare our findings to a set of baseline results (including supervised learning) and evaluate
whether our proposed workflows improve model performance.

5.1 Setup

We adopt the setup described in Section 4.21 and make adaptations to our workflow pipeline
which we describe in Section 5.1.2.

We extend our SimCLR framework in PyTorch Lightning as described in Section 3.2 to
support these new experiments.

5.1.1 Data Source

We use the retina fundus dataset sourced from MedMNIST database (see Section 3.1.1). Figure
5.1 presents samples of images from this category (original and after applying τnov).

Figure 5.1: Comparison between original and augmented retina samples from MedMNIST. 6
original samples are shown on the left column. For each sample x, 5 augmented images derived
from x are shown on the right.

1The setup in Section 4.2 is adopted from Chapter 3 but uses a novel set of augmentations τnov (see Section 4.2.1).
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The class distribution of this dataset is presented in Table B.5. The training set consists of
1080 images only, significantly lower than categories we used for previous experiments.

5.1.2 Adaptations

We propose 2 setups that accommodate for lack of data.

1. Pretrain on different dataset - Perform initial SimCLR pretraining on a different dataset
with lots of unlabelled examples. Then, perform downstream learning with labelled
examples from the category that the model designed for. In this case, we perform initial
pretraining on the colon pathology dataset with 89,996 training examples before finetuning
with the retina fundus dataset.

2. Pretrain on different dataset then further pretrain on specialised dataset - Perform
initial SimCLR pretraining on a different dataset with lots of unlabelled examples (i.e.
colon pathology). Then, perform additional SimCLR pretraining with the specialised
dataset (i.e. retina fundus). Finally, perform downstream learning with labelled examples
(i.e. retina fundus).

Transfer learning have been explored in the past, by performing initial pretraining on a large
set of natural images followed by further pretraining on a large set of medical images[17, 60].
We investigate whether this workflow is viable when there is a lack of images in a specialised
category. The idea is that the base encoder f learns features that are generalisable when applied
to different image modalities.

5.1.3 Baseline Environments

We compare results optained from our proposed modifications in Section 5.1.2 to 2 baseline
environments.

The first baseline environment is to perform supervised learning on the available labelled
data only. This is described in Section 3.2.4.

The second baseline environment is to perform SimCLR pretraining on the full dataset
of retina images followed by downstream transfer learning on the labelled retina images. We
perform downstream experiments for both frozen and unfrozen backbone. Essentially, we make
zero changes to our SimCLR setup and apply it to a setting where we lack both labelled and
unlabelled data.

5.1.4 Results

For full details and a more comprehensive evaluation, refer to Section 7.6.

We find that our first proposed setup (pretraining on different dataset) with a frozen back-
bone during downstream learning performs best, consistently outperforming the best baseline
results and achieving up to 3.2% increase in classification accuracy. We conclude SimCLR
pretraining on a different dataset is a viable option when presented with a lack of data on the
specialised dataset.

5.2 Addressing Data Imbalance

The dermatology dataset provided by MedMNIST is heavily imbalanced. Table B.1 presents
class distribution of dermatology samples. Out of 7 classes, 66% of the samples are labelled as
melanocytic nevi (benign moles).
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In Chapters 3 and 4, we perform SimCLR pretraining and downstream learning, and observed
the dermatology models had less significant improvement over supervised baseline compared
to colon pathology and blood cells. We posit that this may be due to data imbalance, so in
this section, we investigate the effect of balancing the dataset by performing undersampling in
downstream tasks.

Since undersampling the dermatology dataset causes a very limited amount of data, we have
a similar setting to the retina dataset. Therefore, we take the adaptations described in Section
5.1.2 for a setting with lack of data and perform experiments for dermatology. As example,
one setup involves taking the pretrained colon pathology model (using τnov) and performing
downstream learning with 175 dermatology images (25 from each class).

5.2.1 Results

For full details and a more comprehensive evaluation, refer to Section 7.6.

We find that our setups perform poorly and do not outperform the models trained using
the non-undersampled dermatology dataset. We posit that either features learned from colon
pathology do not transfer well to dermatology, or that undersampling is not an effective solution.
Further experiments are needed to provide more concrete insights.
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Chapter 6

Adapting to Greyscale Images

In previous chapters, we investigate the effectiveness of SimCLR pretraining on medical images
of colour. In this chapter, we investigate greyscale datasets consisting of medical scans. We
outline our setup, modifications and results below.

6.1 Setup

We start by taking our setup described in Section 4.2. This involves using our novel augmentation
sequence τnov for colour medical images. We make a necessary adaptation to this sequence as
described in Section 6.1.1.

We use the tissue cells and retinal OCT datasets sourced from MedMNIST database (see
Section 3.1.1).

6.1.1 Data Augmentations

τnov retains the use of colour distortion as a technique to alter the gradient of colour space.
The core intuition is to force the encoder to learn more generalisable features of images during
pretraining.

It is possible to apply colour distortion to greyscale images as our pipeline involves con-
verting images to RGB format. However, this introduces new, meaningless information to
augmented images. This may cause the encoder to learn extraneous features rather than exist-
ing, generalisable features which goes against the core intuition of applying colour distortion.
Therefore, we choose to remove colour distortion from τnov for greyscale images. We hypothesise
that histogram equalisation is sufficient in altering the gradient of intensities. We refer to this
modified sequence as τgrey.

Figure 6.1 presents samples of images from tissue cells and retinal OCT dataset (original and
after applying τgrey).

6.1.2 Results

For full details and a more comprehensive evaluation, refer to Section 7.7.

Our findings reveal that applying SimCLR with τgrey is very effective and has significant
improvement over baseline supervised metrics. Specifically, we observe over 8% increase in
top-1 accuracy for tissue cells and over 10% increase for retinal OCT with limited labelled data
settings. We conclude SimCLR pretraining is beneficial with respect to greyscale medical images.
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(a) Tissue Cells (b) Retinal OCT

Figure 6.1: Comparison between original and augmented MedMNIST samples. For each cate-
gory, 6 original samples are shown on the left column. For each sample x, 5 augmented images
derived from x are shown on the right.

In Section 7.3.1, we had seen SimCLR pretraining being very effective on the colon pathology
dataset. Since colon pathology, tissue cells and retinal OCT datasets are by far the largest datasets
used in this paper, we conclude the degree of improvement can be attributed to the size of the
dataset as well as data modality.
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Chapter 7

Evaluation

In this chapter, we begin by describing our evaluation protocol. We then analyse trends in model
performance during training to verify that our pretrain and downstream environments are set
up appropriately. Finally, we go through each setup and provide a quantitative and qualitative
measure of performance of our models with respect to baseline models. We establish the extent
to which our methods and proposed changes are successful.

7.1 Evaluation Protocol

Evaluation of downstream models involves computing top-1 accuracy and AUC ROC metrics
for classification performance computed on prepartitioned test data. These metrics will be
compared to baseline metrics derived from its supervised counterpart setup. As an example, con-
sider a pipeline that involves pretraining ResNet on the entire colon pathology training dataset,
then finetuning it on 1000 labelled images. The corresponding baseline setup is performing
supervised learning on a newly initialised ResNet model with 1000 labelled colon pathology
images.

Evaluation also involves an investigation of learned feature representations using embedding
techniques such as PCA and t-SNE.

Note that even if we use a subset of the training dataset to train a model, evaluation is carried
out using the entire test dataset.

7.1.1 AUC ROC

AUC ROC is the area under the receiving operating characteristic curve. In this report, we use
the abbreviation AUC for this metric.

Definition 7.1 (True Positive (TP)). Model prediction correctly indicates the presence of a condi-
tion/class.

Definition 7.2 (True Negative (TN)). Model prediction correctly indicates the absence of a condi-
tion/class.

Definition 7.3 (False Positive (FP)). Model prediction incorrectly indicates the presence of a
condition/class.

Definition 7.4 (False Negative (FN)). Model prediction incorrectly indicates the absence of a
condition/class.
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The true positive rate (TPR) is TP
TP+FN . The false positive rate (FPR) is FP

FP+TN . The ROC curve
is constructed by plotting TPR over FPR at thresholds from 0 to 1.

AUC is inherently a metric for binary classification tasks. For multi-class classification, we
calculate AUC using a one-vs-rest scheme that compares each class against all other classes,
then takes the mean as the metric. AUC takes range [0,1] where 1 represents a perfect classifier.

We use AUC as a supplementary quantitative measure of performance with top-1 accuracy
as some medical imaging categories like dermatology have dataset imbalance, which AUC is less
affected by.

7.1.2 Principal Component Analysis

Principal component analysis (PCA) is a dimensionality reduction technique that maps a high-
dimension dataset to a lower-dimension dataset while preserving most of the information in the
original dataset.

We perform visual analysis on the set of learned representations H . To extract H , for pre-
trained models we remove the projection head from f 1. Then, we encode the entire dataset X 2

to output H = f (X ). For baseline supervised models, we remove the final linear layer from f
then compute H = f (X ).

H ∈R512 so we use PCA with 2 principal components to reduce H to H ′ ∈R2.

7.1.3 t-SNE

t-distributed Stochastic Neighbour Embedding[61] (t-SNE) is a dimensionality reduction visu-
alisation tool that analyses similarities between data points and minimises the KL-divergence
score between the joint probabilities of the data and the embedding. t-SNE is non-deterministic:
the same dataset yields different visualisations when run multiple times.

We extract H as described in Section 7.1.2. We first perform PCA with 50 principal compo-
nents to reduce H to H ′ ∈R50 to suppress noise, then perform t-SNE with default parameters
(perplexity of 30) to reduce H ′ to H ′′ ∈R2.

If no observable clusters or patterns emerge, we tune the perplexity, specifically we test for
p ∈ {5,10,15, . . . ,100}.

7.1.4 Silhouette Coefficient

The silhouette coefficient[62] measures how similar each data point is to its own cluster (co-
hesion) with respect to the other clusters (separation). It is a value between -1 and +1, where
higher values indicate well-defined clusters. We formally define it below.

Definition 7.5 (Silhouette Coefficient). Consider a dataset X with K clusters. Measure cohesion
by defining a as follows.

a(i ) = 1

|C I |−1

∑
j∈C I , j ̸=i

d(i , j ) (7.1)

where i is a datapoint, C I is the cluster i belongs to and d is a distance metric.

Measure separation by defining b as follows.

b(i ) = min
J ̸=I

1

|C I |
∑

j∈C J

d(i , j ) (7.2)

1Base encoder
2 X refers to either the training set or test set. For example, in Figure 7.3, to perform PCA we use the training set to

determine the principal components, then plot reduced representations of test data points.
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For data point i ∈C I , define its silhouette as:

s(i ) =
 b(i )−a(i )

max{ a(i ),b(i ) } |C I | > 1

0 |C I | = 1
(7.3)

The silhouette coefficient of X is defined as the mean silhouette score for each i over all K
clusters.

SC = 1

|X |
∑
i∈X

s(i ) (7.4)

We use the silhouette coefficient as a quantitative measure for clustering quality when it is
difficult to empirically analyse learned representations.

7.2 Correctness of Training

In this section, we provide a general overview of the correctness in our pretrain and downstream
environments by observing that the trend in accuracy and loss over time for our models are
sensible.

(a) Top-1 Accuracy (b) Loss

Figure 7.1: Top-1 accuracy and loss for SimCLR pretraining using τnov. Comparison between
pretraining with blood cells, and pretraining with colon pathology followed by further pretraining
with dermatology. Accuracy is determined by whether the model correctly matches the positive
pairs in a batch. Note that lines are exponentially smoothed with α= 0.6 (see Appendix D) and
the true lines are semi-transparent.

For pretrained models, the trend in accuracy and loss over time can be summarised with
examples in Figure 7.1. In general, we observe that accuracy steadily increases over time, loss
progressively decreases over time, training accuracy is higher than validation accuracy and
training loss is lower than validation loss. This indicates a proper execution of pretraining.

There is one exception we encountered which Figure 7.1 also captures: pretraining with
colon pathology followed by further pretraining with dermatology. The plots present accuracy
and loss during the further pretraining stage. We observe an unexpected pattern where the
accuracy and loss moves up and down smoothly over time like a sine wave. This phenomenon
does not occur in any other pretrained models, nor can we offer an explanation. However, over
the long term there is a general increase in accuracy and decrease in loss, suggesting that our
setup works.
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(a) 250 Labelled Samples (b) 1000 Labelled Samples

Figure 7.2: Top-1 validation accuracy for dermatology. Comparison between supervised baseline
and downstream learning with unfrozen encoder (pretrained using τnov).

For downstream environments, training accuracy usually reaches or approaches 100%. The
trend in validation accuracy over time can be summarised with two examples presented in
Figure 7.2. For a small amount of labelled samples, validation accuracy sometimes decreases
at the start of training, but the model continues to perform better than its supervised baseline
counterpart (as depicted by (a)). This phenomenon usually occurs with an unfrozen backbone.
We posit that the backbone encoder is sensitive with a small number of samples.

More generally, we observe that validation accuracy steadily increases over time (as depicted
by (b)).

7.3 Standard SimCLR Setup

7.3.1 Metrics

Table 7.1 presents metrics evaluated on the test dataset. We provide interpretations of our results
below and perform qualitative analysis in Section 7.3.2.

Table 7.1 suggests that SimCLR pretraining yields a significant increase in performance for
models trained on limited amount of labelled data for colon pathology and blood cells. With 100
labelled colon pathology images, pretraining gains 30.6% increase in accuracy over supervised
baseline. With 1000 labelled images, pretraining gains 17.2% increase in accuracy. We observe
for very limited amount of labelled data, freezing the backbone during downstream learning
gives slightly better performance. An interpretation is that finetuning the backbone with a small
dataset is sensitive and may cause detriment to the learned representations during pretraining.
We previously mention this with Figure 7.2.

Despite medical images being downsampled to 28×28 (original sizes are detailed in Ap-
pendix B.1), the models perform well for colon pathology and blood cells. With 100 labelled
images, the models achieve 0.939 AUC for colon pathology and 0.957 for blood cells. We previ-
ously raised a concern that medical images are large and of very high quality, resulting in long
training times. Our findings reveal that an effective solution is to downsample the images during
preprocessing.

SimCLR pretraining with the current setup yields much less increase in performance for
dermatology. We propose the following interpretations.

1. The augmentation sequence τ is adapted from the original SimCLR paper, applied to natu-
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# Labelled Samples
100 250 1000 100%

ACC AUC ACC AUC ACC AUC ACC AUC

Supervised baseline 0.395 0.780 0.559 0.839 0.658 0.879 0.857 0.974
Frozen backbone 0.701 0.939 0.785 0.965 0.830 0.977 - -
Unfrozen backbone 0.685 0.909 0.762 0.921 0.829 0.950 0.875 0.964

(a) Colon Pathology

# Labelled Samples
100 250 1000 100%

ACC AUC ACC AUC ACC AUC ACC AUC

Supervised baseline 0.669 0.725 0.679 0.792 0.712 0.829 0.759 0.904
Frozen backbone 0.677 0.735 0.700 0.811 0.719 0.873 0.739 0.907
Unfrozen backbone 0.674 0.756 0.701 0.839 0.741 0.871 0.787 0.925

(b) Dermatology

# Labelled Samples
100 250 1000 100%

ACC AUC ACC AUC ACC AUC ACC AUC

Supervised baseline 0.618 0.890 0.728 0.919 0.852 0.973 0.952 0.996
Frozen backbone 0.771 0.957 0.835 0.970 0.880 0.984 0.911 0.992
Unfrozen backbone 0.732 0.934 0.796 0.953 0.882 0.982 0.956 0.997

(c) Blood cells

Table 7.1: Classification accuracy and AUC ROC of colon pathology, dermatology and blood cells.
Performance of models trained with pretraining then downstream learning with frozen/unfrozen
backbone is compared to performance of models from baseline supervised learning. Metrics are
calculated using the entire test dataset provided by MedMNIST. Best-performing environments
are bolded.

ral images. It may not perform well for some medical imaging modalities like dermatology.
We propose a novel augmentation sequence in Chapter 4.

2. SimCLR requires lots of data to learn rigid, generalisable features[4]. We perform pre-
training for colon pathology with 89,996 images and for blood cells with 11,959 images.
However, only 7,007 images are used for dermatology. We propose solutions to lack of
unlabelled data in Chapter 5.

3. The dermatology dataset is heavily imbalanced. Table B.1 presents the number of samples
for each class. Over two thirds of dermatology samples labelled as melanocytic nevi. In
Section 5.2, we attempt to balance this out by performing undersampling.

For all three medical imaging categories, metrics suggest pretraining gives small improve-
ment on classification accuracy when 100% of the training dataset is used for downstream tasks.
Performance for dermatology is improved most, with the downstream environment with frozen
backbone gaining 2.8% increase in accuracy over supervised baseline. The frozen backbone
performs worse, suggesting that features learned during pretraining were mostly overridden by
features learned during downstream training. We conclude that SimCLR pretraining benefits
model performance even when there is no deficiency in labelled data, although supervised
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(a) Colon Pathology
PCA | Supervised Baseline

(b) Colon Pathology
PCA | SimCLR Pretraining

(c) Colon Pathology
t-SNE | SimCLR Pretraining

(d) Dermatology
PCA | Supervised Baseline

(e) Dermatology
PCA | SimCLR Pretraining

(f) Dermatology
t-SNE | SimCLR Pretraining

(g) Dermatology (Filtered)
PCA | Supervised Baseline

(h) Dermatology (Filtered)
PCA | SimCLR Pretraining

(i) Dermatology (Filtered)
t-SNE | SimCLR Pretraining

(j) Blood Cells
PCA | Supervised Baseline

(k) Blood Cells
PCA | SimCLR Pretraining

(l) Blood Cells
t-SNE | SimCLR Pretraining

Figure 7.3: PCA and t-SNE of SimCLR pretraining and baseline supervised models on colon
pathology, dermatology and blood cells. Principal components are determined using 100% of the
training dataset. t-SNE components are determined using 100% training data for PCA, followed
by 2000 reduced test data points for t-SNE. Each plot displays the reduced representations
of 2000 data points from the test set. Note that (e) and (f) are the same plots as (c) and (d)
respectively, but without melanocytic nevi data points to observe clusters with greater clarity.
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(a) p = 40 | Train Data (b) p = 40 | Test Data

(c) p = 40 | Train Data (Filtered) (d) p = 40 | Test Data (Filtered)

(e) p = 70 | Train Data (f) p = 70 | Test Data

(g) p = 70 | Train Data (Filtered) (h) p = 70 | Test Data (Filtered)

Figure 7.4: t-SNE of SimCLR pretraining on dermatology with various perplexities. Components
are determined using 100% training data for PCA, followed by 2000 reduced data points (either
train or test). Each plot displays the reduced representations of the data points. Refer to Figure
7.3 for labels.
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learning performs well with much less training time required.

7.3.2 Learned Representations

Figure 7.3 presents visualisations of reduced representations learned during pretraining using
PCA and t-SNE. We outline our findings below.

When performing PCA, we observe distinct clusters formed for colon pathology and blood
cells during pretraining. Clusters formed for the supervised baseline are even more distinct.
Noticeably, some clusters for the baseline models are more spread out, whereas the space
spanned by the clusters for pretrained models is more compact. Clusters also form when we
perform t-SNE on pretrained models with the setup as described in Section 7.1.3.

When performing PCA, there is empirically a weak formation of clusters for dermatology
during pretraining. However, distinct clusters are formed for the supervised baseline, suggesting
there are relationships between dermatology classes which the pretrained model struggled to
learn. There is also a weak formation when we perform t-SNE on the pretrained dermatology
model.

To investigate whether the pretrained dermatology model learned stronger patterns that were
not detected by previous visualisations, we perform t-SNE with perplexities p ∈ {5,10,15, . . . ,100}
using both training data and test data. We find the plots showcase very similar features, with a
weak formation of clusters and majority of points clustered around a small subspace (with the
exception of melanocytic nevi). Figure 7.4 presents the results for p = 40 and p = 70.

Finally, we analyse whether finetuning the encoder with limited labels detriment learned
features. We consider blood cells modality, as freezing f has a 3.9% improvement in accuracy
over finetuning f (see Table 7.1). Figure 7.5 presents visualisations of relevant setups. For
visualisations produced by PCA, we measure clustering quality with Silhouette score. The
pretrained model has SC = 0.153, and finetuning with 250 labels improves SC to 0.172. Despite
presence of stronger clustering, the accuracy and AUC metrics indicate that finetuning with
frozen f consistently outperforms finetuning with unfrozen f .

(a) PCA | Pretrain (b) PCA | Finetune: 250 labels (c) PCA | Finetune: 1000 labels

(d) t-SNE | Pretrain (e) t-SNE | Finetune: 250 labels (f) t-SNE | Finetune: 1000 labels

Figure 7.5: Comparison of clustering quality between blood cells models.
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7.4 Setup: Shorter Sequence

7.4.1 Metrics

Table 7.2 presents metrics evaluated on the test dataset and compares them to performance of
standard SimCLR setup.

The results do not indicate significant change in classification performance for colon pathol-
ogy and dermatology, and the shorter augmentation sequence performs worse for blood cells
with small number of labelled data. For blood cells, we posit that the use of random horizontal
flip and greyscale helps the model learn richer representations. We investigate this in Section
7.4.2.

# Labelled Samples
100 250 1000 100%

ACC AUC ACC AUC ACC AUC ACC AUC

Standard setup 0.701 0.939 0.785 0.965 0.830 0.977 0.875 0.964
Frozen backbone 0.692 0.903 0.787 0.965 0.834 0.979 - -
Unfrozen backbone 0.646 0.883 0.777 0.939 0.831 0.955 0.868 0.973

Improvement -0.9% +0.004 +0.2% +0.000 +0.4% +0.002 -0.7% +0.009

(a) Colon Pathology

# Labelled Samples
100 250 1000 100%

ACC AUC ACC AUC ACC AUC ACC AUC

Standard setup 0.677 0.756 0.701 0.839 0.741 0.873 0.787 0.925
Frozen backbone 0.668 0.759 0.698 0.840 0.714 0.882 0.741 0.909
Unfrozen backbone 0.682 0.741 0.709 0.846 0.735 0.871 0.780 0.926

Improvement +0.5% +0.003 +0.8% +0.007 -0.6% +0.009 -0.7% +0.001

(b) Dermatology

# Labelled Samples
100 250 1000 100%

ACC AUC ACC AUC ACC AUC ACC AUC

Standard setup 0.771 0.957 0.835 0.970 0.882 0.984 0.956 0.997
Frozen backbone 0.749 0.943 0.809 0.961 0.862 0.981 0.890 0.989
Unfrozen backbone 0.730 0.931 0.793 0.949 0.877 0.981 0.955 0.996

Improvement -2.2% -0.014 -2.6% -0.009 -0.5% -0.003 -0.1% -0.001

(c) Blood cells

Table 7.2: Classification accuracy and AUC ROC of colon pathology, dermatology and blood cells.
Random horizontal flip and greyscale are used in the standard setup as described in Section
3.2.1. Standard setup metrics are copied from Table 7.1. We investigate performance of models
without using those augmentations. Applied to setting with 100, 250, 1000 and 100% labelled
training data. Metrics are calculated using the entire test dataset provided by MedMNIST.
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7.4.2 Learned Representations

Figure 7.6 presents visualisations of reduced learned representations during pretraining using
PCA and t-SNE for blood cells. Since τSim performes slightly worse with few labelled data, we
posit that τnat helps the model to learn richer representations. We expect τSim setup to have less
well-defined clusters.

(a) PCA | Pretraining with τnat (b) PCA | Pretraining with τSim

(c) t-SNE | Pretraining with τnat (d) t-SNE | Pretraining with τSim

Figure 7.6: Comparison of clustering quality between learned features during pretraining using
τnat and τSim for blood cells. Refer to Figure 7.3 for labels.

In the figure, we observe slightly more overlapping in (b) compared to (a). We investigate
this quantitatively using the silhouette coefficient.

SCSim = 0.0568 and SCnat = 0.156 with the Euclidean metric. We only analyse the coefficients
relative to each other, since the absolute value (which depends on the chosen distance metric)
denotes clustering quality which we have analysed via visual inspection. The coefficient is higher
for τnat, suggesting the clusters are more well-defined.

However, performing PCA with 2 components yields an explained variance of 0.149 and
0.153 for the setups with τSim and τnat respectively. We further investigate this by performing
PCA with 50 components, giving explained variance of > 0.75. With this setup, SCSim = 0.0590
and SCnat = 0.0739. We conclude that the clusters are more distinct with SCnat, suggesting that
random horizontal flip and random greyscale helps the model to learn richer representations.

7.5 Setup: Novel Augmentation Sequence

7.5.1 Metrics

Table 7.3 presents metrics evaluated on the test dataset and compares them to performance of
standard SimCLR setup.

The results indicate an overall improvement for colon pathology classification with a small
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# Labelled Samples
100 250 1000 100%

ACC AUC ACC AUC ACC AUC ACC AUC

Standard setup 0.701 0.939 0.785 0.965 0.830 0.977 0.875 0.964
Frozen backbone 0.730 0.957 0.813 0.975 0.842 0.982 - -
Unfrozen backbone 0.637 0.884 0.758 0.931 0.839 0.959 0.872 0.972

Improvement +2.9% +0.018 +2.8% +0.010 +1.2% +0.005 -0.3% +0.008

(a) Colon Pathology

# Labelled Samples
100 250 1000 100%

ACC AUC ACC AUC ACC AUC ACC AUC

Standard setup 0.677 0.756 0.701 0.839 0.741 0.873 0.787 0.925
Frozen backbone 0.678 0.757 0.702 0.846 0.741 0.896 0.771 0.930
Unfrozen backbone 0.680 0.741 0.704 0.843 0.744 0.879 0.790 0.926

Improvement +0.3% +0.001 +0.3% +0.007 +0.3% +0.023 +0.3% +0.004

(b) Dermatology

# Labelled Samples
100 250 1000 100%

ACC AUC ACC AUC ACC AUC ACC AUC

Standard setup 0.771 0.957 0.835 0.970 0.882 0.984 0.956 0.997
Frozen backbone 0.771 0.958 0.833 0.971 0.875 0.985 0.912 0.992
Unfrozen backbone 0.762 0.946 0.818 0.962 0.887 0.983 0.956 0.996

Improvement +0.0% +0.001 -0.2% +0.001 +0.5% +0.001 +0.0% -0.001

(c) Blood cells

Table 7.3: Classification accuracy and AUC ROC of colon pathology, dermatology and blood cells.
Standard setup metrics are copied from Table 7.1. We propose a novel augmentation sequence in
Section 4.2 and investigate performance of models with frozen and unfrozen backbone. Applied
to setting with 100, 250, 1000 and 100% labelled training data. Metrics are calculated using the
entire test dataset provided by MedMNIST.

amount of labelled data during training. Our changes to τ are not extreme, so a small, consistent
improvement over accuracy and AUC suggests the addition of random histogram equalisation
and sharpness has potential to work well.

7.5.2 Learned Representations

Figure 7.7 presents visualisations of reduced learned representations during pretraining using
PCA and t-SNE for colon pathology. Similarly, we check if τnov setup has more well-defined
clusters.

The overall PCA plots for colon pathology with τnov and τnat look similar. This is expected as
τnov does not differ significantly from τnat and all other hyperparameters were kept the same.
The t-SNE plots also exhibit similar patterns, such as background (red) being isolated and mucus
(green) adjacent to adipose (black).

We measure clustering quality quantitatively with the Silhouette score as defined by Def-
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(a) PCA | Pretraining with τnat (b) PCA | Pretraining with τnov

(c) t-SNE | Pretraining with τnat (d) t-SNE | Pretraining with τnov

Figure 7.7: Comparison of clustering quality between learned features during pretraining using
τnat and τnov for colon pathology. Refer to Figure 7.3 for labels.

inition 7.5. SCnov = 0.162 and SCnat = 0.190 with the Euclidean metric. Suprisingly, SCnat is
higher despite having lower accuracy in downstream learning. However, performing PCA with 2
components yield a very low explained variance of < 0.2 for both setups.

We perform PCA with 50 components, giving explained variance of> 0.84, and get SCnov = 0.150
and SCnat = 0.105. The clusters formed with SCnov are more distinct, suggesting that the colon
pathology model benefits from using histogram equalisation and sharpness augmentations to
learn richer representations during pretraining.

7.6 Setup: Lack of Data

7.6.1 Metrics

Table 7.4 and Table 7.5 presents metrics evaluated on the test dataset for retina fundus and der-
matology respectively. We provide interpretations of our results below and perform qualitative
analysis in Section 7.6.2.

Table 7.4 includes baseline metrics with setups as described in Section 5.1.3. In general,
pretraining with limited data does not improve classification accuracy. Suprisingly, with 1000
labelled images, pretraining followed by finetuning with frozen f yields a 3% increase in accuracy
over the supervised baseline. However, the same comparison has a 3.5% decrease with 250
labelled images, suggesting these differences may be due to fluctuation.

Initial pretraining on a large dataset from a different category (we use colon pathology)
followed by finetuning with frozen f yields best improvement over baseline metrics. The rest
of the setups involve tuning parameters of f either during pretraining or during downstream
learning, and yields similar accuracy to baseline models. From these observations, we posit that

52



# Labelled Samples
100 250 1000

Pretrain Downstream ACC AUC ACC AUC ACC AUC

None Supervised 0.458 0.648 0.498 0.630 0.480 0.668
Retina Frozen f 0.460 0.660 0.463 0.658 0.510 0.697
Retina Unfrozen f 0.457 0.664 0.455 0.663 0.468 0.667

(a) Baseline Metrics

# Labelled Samples
100 250 1000

Pretrain Freeze f ACC AUC ACC AUC ACC AUC

Path yes 0.488 0.677 0.530 0.686 0.522 0.726
Path no 0.452 0.644 0.455 0.651 0.480 0.680
Path + Retina yes 0.455 0.683 0.498 0.686 0.477 0.688
Path + Retina no 0.452 0.632 0.450 0.644 0.477 0.695

Improvement +2.8% +0.019 +3.2% +0.023 +1.2% +0.029

(b) Metrics

Table 7.4: Classification accuracy and AUC ROC of retina fundus images. Applied to setting
with 100, 250, 1000 labelled training data. Baseline environments are described in Section 5.1.3.
Metrics are calculated using the entire test dataset provided by MedMNIST.

the model learns useful features that contribute to overall improvement during initial pretraining
on the large dataset, and that these features are overridden when we use retina fundus images to
tune f . We investigate this in Section 7.6.2.

Table 7.5 presents metrics from models finetuned using a balanced dermatology dataset
during downstream learning. Consider the models we previously trained using 100 labelled
images with an unbalanced dataset, for which we were able to achieve 68% accuracy3. Here,
even with 100 labelled images from each of the 7 classes (which amounts to almost 700 labelled
images in total4), we only achieve 65.3% accuracy. We propose the following explanations.

3SimCLR pretraining with novel augmentation sequence and downstream learning with unfrozen backbone.
4Dermatofibroma has 80 samples only and vascular lesions has 99 samples. Therefore, the experiment uses 679

images.

# Labelled Samples from Each Class
10 25 100

Pretrain Freeze f ACC AUC ACC AUC ACC AUC

Path yes 0.427 0.823 0.496 0.767 0.546 0.850
Path no 0.442 0.707 0.590 0.750 0.600 0.776
Path + Derma yes 0.424 0.795 0.495 0.866 0.575 0.803
Path + Derma no 0.454 0.741 0.637 0.706 0.653 0.776

Table 7.5: Classification accuracy and AUC ROC of dermatology. Applied to setting with 10, 25,
100 labelled training data from each class. Metrics are calculated using the entire test dataset
provided by MedMNIST.
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(a) PCA | Supervised Baseline (b) t-SNE | Supervised Baseline

(c) PCA | Pretrain with Retina Fundus (d) t-SNE | Pretrain with Retina Fundus

(e) PCA | Pretrain with Pathology
Further Pretrain with Retina Fundus

(f) t-SNE | Pretrain with Pathology
Further Pretrain with Retina Fundus

(g) PCA | Pretrain with Pathology (h) t-SNE | Pretrain with Pathology

Figure 7.8: PCA and t-SNE of SimCLR pretraining and baseline supervised models for retina
fundus (note that labels are ordinal regression). t-SNE components are determined using 100%
training data for PCA, followed by 2000 reduced test data points for t-SNE. Each plot displays the
reduced representations of 2000 retina fundus data points from the test set.
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1. Features learned for colon pathology do not transfer well to dermatology images.

2. It is better to use all available data for training rather than undersampling to balance the
dataset.

It is important to note that we have done only a brief investigation on transfer learning
across different image categories and imbalanced datasets. Further investigation is required to
provide more concrete insights.

7.6.2 Learned Representations

Figure 7.8 presents visualisations of reduced learned representations during pretraining using
PCA and t-SNE for models later tuned for retina fundus.

There is no formation of clusters for any of the pretrained models. The Silhouette scores for
the plots are close to 0. Since distinct clusters are formed for the baseline supervised model, this
may suggest that the pretrained models learned representations that are either not transferable
to retina fundus (in the case of pretraining with colon pathology), or that the representations
are extremely weak (in the case of pretraining with retina fundus). The latter is supported by
how pretraining with retina fundus did not increase classification accuracy of the corresponding
downstream models with respect to baseline metrics.

However, we did see improvement over baseline metrics when performing initial pretraining
with colon pathology followed by finetuning with frozen f for retina fundus. Performing PCA
with 50 components (and explained variance of 0.981) for this setup yields a Silhouette score of
-0.0078. We posit that the encoder as a whole is not transferrable, but the early layers of f may
have extracted transferable features.

Our results suggest initial SimCLR pretraining on a large dataset followed by finetuning with
frozen f for a specialised dataset is effective for medical images.

7.7 Setup: Greyscale Images

7.7.1 Metrics

Table 7.6 presents metrics evaluated on the test dataset. We provide interpretations of our results
below and perform qualitative analysis in Section 7.7.2.

Table 7.6 suggests that SimCLR pretraining with our novel augmentation proposition τgrey

is very effective on greyscale medical images, specifically for classifying tissue cells and retinal
OCT. With a limited amount of labelled data, we observe over 8% increase in accuracy for tissue
cells and over 10% increase for retinal OCT across all simulated limited data environments (100,
250 and 1000 labelled samples for finetuning). Likewise, we observe significant increase in AUC
metrics.

The metrics suggest finetuning with frozen f yields best performance, although pretraining
then finetuning the encoder also improves over baseline supervised metrics.

For retinal OCT classification, pretraining followed by finetuning with 1000 labelled images
yields similar performance to performing supervised learning with 97,4775 labelled images.

We previously had similar success with pretraining on the colon pathology dataset in Section
7.3.1. We draw a connection that the colon pathology, tissue cells and retinal OCT datasets are
by far the largest datasets used throughout this paper, with over 89,000 training samples each.
The next largest dataset is blood cells at 11,959 training samples. Having performed experiments

5100% of training dataset
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# Labelled Samples
100 250 1000 100%

ACC AUC ACC AUC ACC AUC ACC AUC

Supervised baseline 0.403 0.648 0.437 0.682 0.463 0.728 0.637 0.917
Frozen backbone 0.486 0.778 0.517 0.812 0.546 0.853 - -
Unfrozen backbone 0.459 0.725 0.487 0.761 0.513 0.790 0.636 0.889

(a) Tissue Cells

# Labelled Samples
100 250 1000 100%

ACC AUC ACC AUC ACC AUC ACC AUC

Supervised baseline 0.380 0.659 0.475 0.755 0.601 0.818 0.723 0.901
Frozen backbone 0.665 0.899 0.658 0.915 0.708 0.909 - -
Unfrozen backbone 0.570 0.786 0.637 0.851 0.663 0.857 0.736 0.903

(b) Retinal OCT

Table 7.6: Classification accuracy and AUC ROC of tissue cells and retinal OCT. Performance of
models trained with pretraining then downstream learning with frozen/unfrozen backbone is
compared to performance of models from baseline supervised learning. Metrics are calculated
using the entire test dataset provided by MedMNIST. Best-performing environments are bolded.

for 7 medical imaging modalities, there is compelling evidence that SimCLR pretraining benefits
from very large datasets of the same modality as downstream tasks.

7.7.2 Learned Representations

Figure 7.9 presents visualisations of reduced learned representations during pretraining using
PCA and t-SNE. We outline our findings below.

We observe distinct clusters formed for retinal OCT during pretraining. The clusters are
compact compared to the reduced representations from the baseline model, suggesting that
relevant patterns are learned by the pretrained model, but they are not as rich as the patterns
learned with supervised learning.

We observe a weaker formation of clusters for tissue cells for the pretrained model, despite
distinct clusters forming for the corresponding baseline model. Noticeably, the pretrained model
distinguishes between collecting duct, connecting tubule and proximal tubule segments. We
attribute these weak clusters to the fact that the ResNet models struggled with classifying tissue
cells. With 100% of the labelled training set, the model trained with supervised learning achieved
63.7% accuracy only.
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(a) Tissue Cells
PCA | Supervised Baseline

(b) Tissue Cells
PCA | SimCLR Pretraining

(c) Tissue Cells
t-SNE | SimCLR Pretraining

(d) Retinal OCT
PCA | Supervised Baseline

(e) Retinal OCT
PCA | SimCLR Pretraining

(f) Retinal OCT
t-SNE | SimCLR Pretraining

Figure 7.9: PCA and t-SNE of SimCLR pretraining and baseline supervised models on tissue
cells and retinal OCT. Principal components are determined using 100% of the training dataset.
t-SNE components are determined using 100% training data for PCA, followed by 2000 reduced
test data points for t-SNE. Each plot displays the reduced representations of 2000 data points
from the test set.
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Chapter 8

Conclusion

In this thesis, we evaluate the SimCLR framework for medical image classification. We implement
SimCLR in Python using PyTorch Lightning, as well as two downstream environments: finetuning
with a frozen backbone and finetuning with an unfrozen backbone. We implement evaluation
tools to provide a comprehensive, unbiased assessment of SimCLR and our proposed changes.

When using the setup as described in the original papers[4, 5], SimCLR pretraining substan-
tially improves performance over supervised baseline on medical imaging modalities of colour
when presented with lots of unlabelled data and a lack of labelled data. SimCLR pretraining
offers small improvement when lots of labelled data are present.

We find retaining the use of random horizontal flip and random greyscale augmentations
causes a small improvement in classifying blood cells in a limited labelled data environment.
We propose a novel augmentation sequence involving random histogram equalisation and
random sharpness, which consistently outperforms the original augmentation sequence for
medical imaging modalities of colour. We also propose a sequence for greyscale medical images
which substantially improves performance over supervised models when lack of labelled data is
present.

With limited unlabelled and labelled data, we propose initial pretraining with a different,
larger dataset, then freezing the backbone and finetuning with the labelled data from the
specialised dataset. This approach improves over baseline metrics when evaluated on retina
fundus images. We briefly investigate the effect of data imbalance and find that balancing
the dermatology dataset with undersampling yields poorer performance than using the entire
dataset.

8.1 Future Work

Out-of-distribution Data

In this project, we source medical images from the MedMNIST database for pretraining, fine-
tuning and testing. Future work involves using other datasets and out-of-distribution data for
evaluation. For example, we carry out experiments on classifying dermatology images (concern-
ing skin conditions) separated into 7 classes. It may be of interest to assess the effectiveness of
SimCLR pretraining against medical imaging modalities that are categorised into more specific
subclasses, for instance, a dermatology dataset with 50 classes.
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Downsampling-Performance Tradeoff

SimCLR benefits from long training with many epochs. Medical images are often large in size. In
this project, we scale the original images down to 28×28. Training models with low resolution
images yield strong performance for some modalities like blood cells (95.6% accuracy), but
other modalities like tissue cells perform poorly (63.7% accuracy). We did not investigate
whether these modalities suffer from downsampling images, or whether CNNs struggle with
them generally. A useful problem to investigate is given a fixed amount of pretrain time, identify
the downsampled resolution that yields optimal performance.

Augmentation Sequence

In this thesis, we propose a novel augmentation sequence involving random histogram equal-
isation and sharpness. We perform experiments and evaluations as a proof of concept that
the addition of these augmentations work well for many medical imaging modalities. Future
work involves hyperparameter tuning to discover the potential of equalisation and sharpness.
Future work also includes investigating whether these augmentations can be adopted in other
contrastive frameworks, such as MoCo and ReLIC[2, 3], as well as incorporating finetuning
techniques introduced in SimCLRv2[5] such as distillation and keeping part of the projection
head.

Lack of Data

In this thesis, we explore initial pretraining on a different medical imaging modality before
finetuning with the specialised modality if there is a lack of data for the latter. We conduct
experiments with colon pathology and retina fundus. Future work involves investigation into
other modalities, as well as initial pretraining with natural images.

We briefly investigate tackling data imbalance with undersampling. It is worth investigating
into upsampling, potentially with a different set of augmentations.

8.2 Final Remarks

We hope our contributions will help advance the state of the art for medical image classification
and see an adoption in using contrastive learning and self-supervised learning in the medical
field.
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Appendix A

SIFT

We provide some preliminary definitions below.

Definition A.1 (Convolution). Given descrete functions f and g , a convolution ∗ describes the
amount of overlap of g as it is shifted across f .(

f ∗ g
)

[n] =
∞∑

k=−∞
f [k]g [n −k] (A.1)

Definition A.2 (Difference of Gaussian). The difference of Gaussian filter is defined in (A.2) where
G denotes the Gaussian function and k is a constant.

DoG(x, y,σ) = I ∗G(kσ)− I ∗G(σ) (A.2)

Definition A.3 (Gradient Magnitude and Orientation). Let f denote the input image. Let hx and
hy denote Sobel filters.

hx =

1 0 −1
2 0 −2
1 0 −1

 hy =

 1 2 1
0 0 0
−1 −2 −1

 (A.3)

The gradient magnitude is:

g =
√

g 2
x + g 2

y (A.4)

The gradient orientation is:

θ = arctan

(
g y

gx

)
(A.5)

SIFT transforms an image into a set of interest points. The algorithm is described below.

1. Detection of scale-space extrema - Apply DoG with various values of k to detect extrema
at multiple scales.

2. Keypoint localisation - Fit a quadratic function to DoG response of neighbouring pixels
to refine extrema estimates to sub-pixel accuracy. Refined points are called keypoints.

3. Orientation assignment - For each keypoint, calculate the gradient magnitude and orien-
tation of pixels in its neighbourhood. Each pixel votes for an orientation bin, weighted
by its gradient magnitude. This creates a histogram of orientations and the keypoint is
assigned the dominant orientation.

4. Keypoint descriptor - A 128-dimensional feature vector is used to describe each keypoint.
Each keypoint describes the gradient magnitude and orientation of 16 local subregions to
achieve scale and orientation invariance. Gradients are robust to intensity.
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Appendix B

MedMNIST Dataset Details

B.1 Original Sizes

Dataset Resolution (pixels)

Colon Pathology 224×224
Dermatology 600×450
Blood Cells1 200×200
Retina Fundus 1736×1824
Tissue 32×32
Retinal OCT (384–1536)× (227–512)

Table B.1: Resolution of source images for different datasets from MedMNIST before being
resized.

B.2 Sample Distribution

Class # Samples
Train Validation Test

adipose 9,366 1,041 1,338
background 9,509 1,057 847
debris 10,360 1,152 339
lymphocytes 10,401 1,156 634
mucus 8,006 890 1,035
smooth muscle 12,182 1,354 592
normal colon mucosa 7,886 877 741
cancer-associated stroma 9,401 1,045 421
colorectal adenocarcinoma epithelium 12,885 1,432 1,233∑

89,996 10,004 7,180

Table B.2: Samples distribution per label for colon pathology.

1Centre cropped from 360×363
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Class # Samples
Train Validation Test

actinic keratoses and intraepithelial carcinoma 228 33 66
basal cell carcinoma 359 52 103
benign keratosis-like lesions 769 110 220
dermatofibroma 80 12 23
melanoma 779 111 223
melanocytic nevi 4,693 671 1,341
vascular lesions 99 14 29∑

7,007 1,003 2,005

Table B.3: Samples distribution per label for dermatology.

Class # Samples
Train Validation Test

basophil 852 122 244
eosinophil 2,181 312 624
erythroblast 1,085 155 311
immature granulocytes 2,026 290 579
lymphocyte 849 122 243
monocyte 993 143 284
neutrophil 2,330 333 666
platelet 1,643 235 470∑

11,959 1,712 3,421

Table B.4: Samples distribution per label for blood cells.

Class # Samples
Train Validation Test

A 486 54 174
B 128 12 46
C 206 28 92
D 194 20 68
E 66 6 20∑

1,080 120 400

Table B.5: Samples distribution per label for retina fundus. Classes are based off of ordinal
regression.
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Class # Samples
Train Validation Test

Collecting Duct, Connecting Tubule 53,075 7,582 15,165
Distal Convoluted Tubule 7,814 1,117 2,233
Glomerular endothelial cells 5,866 838 1,677
Interstitial endothelial cells 15,406 2,201 4,402
Leukocytes 11,789 1,684 3,369
Podocytes 7,705 1,101 2,202
Proximal Tubule Segments 39,203 5,601 11,201
Thick Ascending Limb 24,608 3,516 7,031∑

170,866 24,440 48,880

Table B.6: Samples distribution per label for tissue.

Class # Samples
Train Validation Test

Choroidal Neovascularization 33,484 3,721 250
Diabetic Macular Edema 10,213 1,135 250
Drusen 7,754 862 250
Normal 46,026 5,114 250∑

97,477 10,732 1,000

Table B.7: Samples distribution per label for Retinal OCT. Classes are based on ordinal regression.
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Appendix C

Pretraining Epochs

Modality Epochs

colon pathology 201
dermatology 2,000
blood cells 2,000
retina fundus 10,000
retinal OCT 200
tissue cells 200

Table C.1: Number of epochs during pretraining across different medical imaging modalities.
For larger datasets, lower epochs is used for practical training durations.
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Appendix D

Graph Smoothing

We apply an exponential moving average (EMA), as defined in (D.1), to smooth out graphs when
appropriate, for example, when displaying train and validation accuracy over time. The original
graphs exhibit fluctuations due to mini-batch gradient descent. Figure D.1 compares graphs
before and after applying EMA.

x(i )
smoothed = (1−α)x(i ) +αx(i−1) 0 ≤α≤ 1 (D.1)

(a) original (b) smoothed

Figure D.1: Example plots to showcase effect of applying EMA.
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