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Abstract
We develop a binary classification model to
address the task of identifying patronising
and condescending language (PCL) in text
(Perez Almendros et al., 2020). We explore
various improvements on the RoBERTa base
model (Liu et al., 2019), including data aug-
mentation, ensemble methods and various pre-
processing techniques. Our final ensemble
model achieves an F1-score of 0.5731 on the
official dataset, outperforming RoBERTa base
by 9%. We analyse the performance of the
model on different types of text to identify its
strengths and weaknesses.1

1 Introduction

Natural language processing has made significant
advancements in recent years, but it encounters
difficulty with certain tasks. In this paper, we
tackle the task of determining whether a piece of
text uses patronising and condescending language
(PCL) by developing a binary classification model.
The dataset is described in the task paper (Perez Al-
mendros et al., 2020), which also details the criteria
for classifying a piece of text as PCL. The detec-
tion of PCL is of interest since PCL “makes it more
difficult for vulnerable communities to overcome
difficulties.” This task appeared as Task 4.1 in the
SemEval 2022 competition.

We start with the RoBERTa base model provided
by FacebookAI (Liu et al., 2019) and explore im-
provements including data augementation and en-
sembling to achieve better performance.

2 Data Analysis

2.1 Quantitative Analysis
The provided dataset for PCL detection is heav-
ily imbalanced, with the training set having 794
positive2 examples and 7581 negative examples.

1Code available at https://gitlab.doc.ic.ac.
uk/ffj20/nlp-cw.

2Text with PCL is considered a positive example.

(a) Distribution by text length

(b) Distribution by country

Figure 1: Normalised distribution of PCL and non-PCL
samples by text length and country.

Figure 1 presents the distribution of PCL and
non-PCL samples. We observe that longer sam-
ples are more likely to be PCL, although the dif-
ference is marginal. We also observe that samples
from Malaysia (my) are more likely to be non-PCL
compared to other countries, while samples from
Tanzania (tz) are more likely to be PCL.

Both the text length and country of origin pro-
vide weak indicators of whether a sample is PCL.
We conclude that the dominating feature is the text
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itself, and use this as the basis for our model.

2.2 Qualitative Analysis

In the original dataset, samples are labelled with
a score from 0 to 4 where a larger score indicates
a larger patronising or condescending tendency in
the language used. These scores are then mapped
to a binary classification where 0-1 are classified
as non-PCL and 2-4 are classified as PCL.

In order to assess how subjective the task is, we
find example text that have scores 1 and 2, i. e.
on the classification boundary. The chosen exam-
ples are regarding the “disabled” category and are
presented in Appendix A.

Example A.1 (score: 2) talks about an author
publishing a book featuring the works of ill or dis-
abled artists globally, alongside her own works, to
showcase their talent. Referring to Perez Almen-
dros et al. (2020), we hypothesise that this sample
has its score due to “the privileged community be-
ing presented as saviours of the vulnerable com-
munity.” However, an argument can be made that
the text puts the vulnerable community on equal
footing with the privileged community, since their
works are placed side by side and the word choice
is respectful, a direct contrast to the PCL feature of
“creating a difference between ‘us’ and ‘them”’.

Example A.2 (score: 1) discusses a doctor’s as-
surance, given in an interview, that marginalized
communities like the disabled, will receive equal
opportunities within the education system. Refer-
ring to Perez Almendros et al. (2020), an argument
can be made that this sample also has the undertone
of “the privileged community being presented as
saviours of the vulnerable community,” since dis-
abled people are depicted as needing to be given
equal opportunities by the privileged community.

These examples demonstrate that the task of
classifying text as PCL or non-PCL is subjective.
Therefore, we expect the model to have difficulty
in classifying text, particularly those with weak
patronising tendency.

3 Setup

RoBERTa (Liu et al., 2019) is a BERT-based trans-
former model that achieves state-of-the-art perfor-
mance on NLP tasks. We will use RoBERTa and
DistilBERT (Sanh et al., 2019), a smaller distilled
version of RoBERTa, as our model foundation.

3.1 Training Data

We partition the PCL training set with an 80:20
split into a internal training set and an internal dev
set. We use the internal dev set for validation and
the official labelled dev set as our test set.

The provided labels range from 0 to 4. As de-
scribed by Perez Almendros et al. (2020), we pre-
process the labels by mapping 0-1 to 0 (non-PCL)
and 2-4 to 1 (PCL) for binary classification.

Following our quantitative analysis in Section
2.1, we conclude the dominating feature of PCL to
be the text itself. We use the text as the sole input
feature. We experiment with cased and uncased
models, as well as removing punctuation. We find
minimal difference in performance, and our final
setup involves a combination of cased and uncased
models with punctuation.

We also experiment with arranging the training
set by the text length in terms of word count, start-
ing with shorter samples. The intuition is that for
non-pretrained base LLMs, the model may more
easily learn features from simpler, shorter samples.
However, we find this to have minimal effect on
performance and opt not to use this for our final
setup.

3.2 Data Sampling and Augmentation

We address dataset imbalance by using a combina-
tion of downsampling non-PCL data and upsam-
pling PCL data. Using RoBERTa base, we find the

Figure 2: F1-score of RoBERTa base trained with 1
batch and 9 batches of augmentation via translation.
Plots are smoothed with an exponential moving average
with α = 0.8.



optimal mix of downsampling and upsampling to
be duplicating the PCL data, followed by down-
sampling the PCL data to match the amount of
non-PCL data.

On top of data sampling, we also use data aug-
mentation to further increase the robustness of the
model and reduce overfitting to the original data.
Augmentation is done via machine translation pro-
vided by API calls to Google Translate. The orig-
inal data is translated into a target language, and
then translated back into English. We choose Ko-
rean as our target language as it has a different
grammar structure to English, thereby introducing
more variation. The data augmentation improved
the performance of the RoBERTa base from 0.50
to 0.53 on the official dev set. We experiment
with augmentation using 9 target languages to get
a larger corpus, but it does not result in significant
improvement in performance (Figure 2), so we opt
to use Korean only.

3.3 Model Architecture

For RoBERTa base, we freeze the tokeniser and
pass the training set, then finetune the base encoder
on the tokenised training set.

We adopt a similar training procedure as Liu

Figure 3: F1-score of RoBERTa base trained with differ-
ent learning rates and scheduler settings, with 5 epochs.
Using AdamW with linear scheduler with warmup.
Evaluated on the internal dev set. For full results, see
Appendix B.

Hyperparameter Value
Warmup Percentage 0.1
Batch Size 8
Learning Rate Decay Linear
AdamW ϵ 1e-5
Adam β1 0.9
Adam β2 0.98
Max Epochs 5

Table 1: Hyperparameters for finetuning RoBERTa and
DistilBERT encoders. If a hyperparameter is not listed,
it remains unchanged from the base setup. (Liu et al.,
2019).

et al. (2019), using AdamW and linear scheduler
with warmup. We find using a scheduler to improve
performance. We perform hyperparameter tuning
on the learning rate, β2 of AdamW and warmup
percentage. Selected results are presented in Figure
3. Table 1 presents our optimal parameter findings.

During training, we save a model checkpoint
every epoch and choose the checkpoint with the
highest F1-score on the internal dev set. This is
a form of early stopping / implicit regularisation.

(a) Train loss

(b) Dev loss

Figure 4: Train and dev loss of RoBERTa base over 5
epochs, using parameters in Table 1. Plots are smoothed
with an exponential moving average with α = 0.8.



Original Model F1-score
SamLowe/roberta-base-go_emotions 0.5511
Seethal/sentiment_analysis_generic_dataset 0.4542
distilbert/distilbert-base-uncased-finetuned-sst-2-english 0.4545
martin-ha/toxic-comment-model 0.3699
mrm8488/distilroberta-finetuned-financial-news-sentiment-analysis 0.5206
roberta-base 0.5407

Table 2: Internal dev F1-scores of finetuned individual models. The top 3 models are bolded, with the top 2 being
RoBERTa models and the other 4 models being DistilRoBERTa.

Figure 4 presents the train and dev loss curves with
our optimal parameters. Interestingly, the dev loss
increases over time, potentially indicating some
overfitting. We have attempted to address this with
early stopping, using a scheduler and augmentation
techniques.

The base model is a binary classifier. We also
use pretrained RoBERTa and DistilBERT encoders
trained on other tasks, such as sentiment analysis
on financial news3. We use the same training pro-
cedure and hyperparameters for pretrained models
as the base model. For encoders with a multi-class
classifier, we add a linear layer on top of the en-
coder to convert it into a binary classifier, then train
both the linear layer and the encoder. See Table 2
and Section 4 for more detail.

4 Ensemble Methods

Ensemble methods involve combining multiple
models to improve overall performance (Fattahi
and Mejri, 2021; Kanakaraj and Guddeti, 2015).
Our approach involves training multiple models,
then averaging their predictions4 at inference time
to obtain the final prediction. The intuition is that
different models may capture different underlying
features of the data, resulting in different strengths
and weaknesses. Combining them can result in a
more robust classifier.

4.1 Model Training

We train a variety of RoBERTa and DistilBERT
models as described in Section 3.3. Table 2
presents the performance of individual models.

We use the setup described by Table 1 for all
models.

3For ensemble methods
4Assume an ensemble classifier with 3 models predicting

a 0.3, 0.7 and 0.9. Its average is 0.63, so the final prediction is
1.

4.2 Model Selection
We select the top 3 models from Table 2 to form
our ensemble classifier. This yields an F1-score of
0.5621 on the internal dev set, a 1.1% improvement
from the best individual model.

For the final ensemble classifier, we retrain the
3 models on the entire training set, yielding an
F1-score of 0.5731 on the official dev set, with a
precision of 0.4723 and recall of 0.7296.

5 Baseline Models

We compare the performance of our final model
to two baseline models based on the bag of word
(BOW) representation. One of the models uses
the Complement Naive Bayes algorithm for pre-
dictions, achieving an F1-score of 0.1500 on the
official dev set. The other uses the Gaussian Naive
Bayes algorithm with data balancing by undersam-
pling, achieving an F1-score of 0.2030 on the offi-
cial dev set. Our model clearly outperforms these
baseline models.

The Gaussian Naive Bayes classifier makes the
assumption that all features in the representation
are independent and that the data follows a Gaus-
sian distribution in each category. An example of a
false positive for PCL given by this classifier is a
sample regarding changes to tariff schemes to give
relief to poor families (Appendix A.3). We suggest
that it is misclassified as PCL because it contains
the word “poor”, which is associated with PCL.

6 Analysis

We analyse the prediction of the final model on the
results of the official dev set.

We notice that the model is significantly better at
identifying PCL in text that have a higher level of
patronising and condescending content. We look at
the prediction metrics for samples with raw scores
from 2 to 4 (placing the sample in the PCL cate-
gory), and find that the model predicts those with



higher raw scores at a much higher recall, as shown
in Table 3. In all these cases, the model has near
perfect precision.

Raw Score Recall
2 0.3333
3 0.6742
4 0.8587

Table 3: The recall of the final model on official dev
data with raw scores from 2 to 4

We investigate the performance of the model on
different sentence lengths. As presented in Figure
5, although the model performs similarly in terms
of F1-score across all sentence lengths up to 125
words, the recall generally decreases as sentence
length increases, while precision increases. We
speculate that in shorter sentences, the PCL fea-
tures are more prominent for the model to pick
out, hence giving a higher recall. With longer sen-
tences, PCL may be more difficult to detect where

(a) Performance of the final model by text length

(b) Performance of the final model by data category

Figure 5: Normalised distribution of PCL and non-PCL
samples by text length and country.

only part of the sentence is PCL, but when a full
sentence is PCL, the model is precise in its detec-
tion. At lengths above 125 words, there does not
seem to be a general trend. Note that the sample
size is small here so the performance there is not
indicative.

We also investigate the performance of the model
according to data categories. As Figure 5 shows,
the model performs different in different date cat-
egories. We observe that in most categories, the
recall is higher than the precision except the “im-
migrant” category. In general, the model performs
the best in the “in-need” category and the worst in
the “disabled” category.

Looking at the results of the SemEval 2022 com-
petition, the top models achieve an F1-score above
0.6. These models tend to have similar precision
and recall (between 0.6 and 0.7) and are also BERT-
based models. Our model has a higher recall but
a significantly lower precision, suggesting that it
flags for PCL excessively. We believe this is caused
by the aggressive downsampling of non-PCL train-
ing data.

7 Conclusion

We develop a binary classification ensemble model
for detecting patronising and condescending lan-
guage in text, using a combination of RoBERTa and
DistilBERT finetuned encoders. We find data aug-
mentation and ensembling to be effective methods.
We achieve an F1-score of 0.5731 on the official
dev set, outperforming the RoBERTa base baseline
by 9%. We also explore various pre-processing
methods like reordering by text length and remov-
ing punctuation, but find insignificant levels of im-
provement.

We analyse the performance of the final model
on the official dev set, and find that the model is bet-
ter at identifying PCL where there is a lot of patro-
nising content. We find that the model has varying
performance across different data categories and
sentence lengths. In particular, it performs best in
the “in-need” category and worst in the “disabled”
category.

Further work involves using larger batch sizes
and exploring state-of-the-art model architectures
other than RoBERTa and DistilBERT, as well as
techniques like adversarial training and chain-of-
thought question answering (Wei et al., 2022). It
also involves investigating how our methods scale
with a larger training corpus.
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A Example Text

Text taken from the official dev set (Perez Almen-
dros et al., 2020).

A.1 Example 1

“Krueger recently harnessed that creativity to self-
publish a book featuring the poems, artwork, pho-
tography and short stories of 16 ill or disabled
artists from around the world. She hopes the book,
which contains some of her own work as well, will
show how talented disabled people can be.”

A.2 Example 2

“Last month, Dr Maszlee, in an interview with RTM,
assured marginalised communities like the disabled
that they would be given equal opportunities under
the education system.”

A.3 Example 3
“Recommended changes to residential consumer tar-
iff schemes will be designed to give more relief to
poor families, especially those living in compound
houses. <h> National Builders Corps”

B Hyperparameter Tuning Results

lr AdamW β2 Warmup F1-Score
1e-5 0.98 0.02 0.5323
1e-5 0.98 0.06 0.5341
1e-5 0.98 0.1 0.5407
1e-5 0.999 0.02 0.5255
1e-5 0.999 0.06 0.5444
1e-5 0.999 0.1 0.5333
1e-5 0.99 0.02 0.5484
1e-5 0.99 0.06 0.5311
1e-5 0.99 0.1 0.5387
1e-6 0.98 0.02 0.4665
1e-6 0.98 0.06 0.4746
1e-6 0.98 0.1 0.4727
1e-6 0.999 0.02 0.4913
1e-6 0.999 0.06 0.4906
1e-6 0.999 0.1 0.4963
1e-6 0.99 0.02 0.4726
1e-6 0.99 0.06 0.4746
1e-6 0.99 0.1 0.4732
5e-6 0.98 0.02 0.529
5e-6 0.98 0.06 0.5075
5e-6 0.98 0.1 0.5359
5e-6 0.999 0.02 0.5282
5e-6 0.999 0.06 0.5265
5e-6 0.999 0.1 0.5295
5e-6 0.99 0.02 0.5247
5e-6 0.99 0.06 0.5293
5e-6 0.99 0.1 0.5272

Table 4: Full hyperparameter tuning results on
RoBERTa base: presenting F1-score, trained with differ-
ent learning rates and scheduler settings, with 5 epochs.
Learning rate refers to the AdamW ϵ value. Evaluated
on the internal dev set.
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